Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(17): 7912-7925, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38620046

RESUMO

We designed [VO(bdhb)] (1') as a new electronic qubit containing an oxovanadium(IV) ion (S = 1/2) embraced by a single bis(ß-diketonato) ligand [H2bdhb = 1,3-bis(3,5-dioxo-1-hexyl)benzene]. The synthesis afforded three different crystal phases, all of which unexpectedly contain dimers with formula [(VO)2(bdhb)2] (1). A trigonal form (1h) with a honeycomb structure and 46% of solvent-accessible voids quantitatively transforms over time into a monoclinic solvatomorph 1m and minor amounts of a triclinic solventless phase (1a). In a static magnetic field, 1h and 1m have detectably slow magnetic relaxation at low temperatures through quantum tunneling and Raman mechanisms. Angle-resolved electron paramagnetic resonance (EPR) spectra on single crystals revealed signatures of low-dimensional magnetic behavior, which is solvatomorph-dependent, being the closest interdimer V···V separations (6.7-7.5 Å) much shorter than intramolecular V···V distances (11.9-12.1 Å). According to 1H diffusion ordered spectroscopy (DOSY) and EPR experiments, the complex adopts the desired monomeric structure in organic solution and its geometry was inferred from density functional theory (DFT) calculations. Spin relaxation measurements in a frozen toluene-d8/CD2Cl2 matrix yielded Tm values reaching 13 µs at 10 K, and coherent spin manipulations were demonstrated by Rabi nutation experiments at 70 K. The neutral quasi-macrocyclic structure, featuring nuclear spin-free donors and additional possibilities for chemical functionalization, makes 1' a new convenient spin-coherent building block in quantum technologies.

2.
J Inorg Biochem ; 260: 112702, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39163714

RESUMO

In the upcoming decades, the incidence and mortality rates of cancer are expected to rise globally, with colorectal and prostate cancers among the most prevalent types. Despite advancements in molecular targeted therapy, platinum-based chemotherapies remain the cornerstone of treatment, especially for colorectal and prostate cancer, with oxaliplatin and cisplatin being extremely effective due to their DNA-targeting capabilities. In our pursuit of new platinum-based chemotherapeutics that are potentially less toxic and more effective, we have explored the combination of the Pt-binding groups of the diaminocyclohexane ring used in oxaliplatin, with the stable amino-pyrimidine hemicurcumin moiety. This new derivative exhibit improved stability in physiological conditions and increased solubility in aqueous media, demonstrating promising effects on cell proliferation of both colorectal and prostate cells. We report herein the complete synthesis and chemical characterization in solution of the new derivative [(1R,2R)-N1-(3-(4-((E)-2-(2-Amino-6-methylpyrimidin-4-yl)vinyl)-2-methoxyphenoxy) propyl) cyclohexane-1,2-diamine] (MPYD). Our analysis includes an examination of its acid-base equilibria, speciation and stability in physiological conditions. The synthesis and in situ formation of Pt(II) complexes were investigated by nuclear magnetic resonance spectroscopy, while density functional theory calculations were employed to elucidate the chemical structure in solution. Results on the biological activity were obtained through cell viability assays on different colorectal and prostate cell lines (HCT116, HT29, PC3 and LNCaP).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA