Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 239(5): 1692-1706, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37357353

RESUMO

Climate change and extreme climatic events, such as marine heatwaves (MHWs), are threatening seagrass ecosystems. Metabolomics can be used to gain insight into early stress responses in seagrasses and help to develop targeted management and conservation measures. We used metabolomics to understand the temporal and mechanistic response of leaf metabolism in seagrasses to climate change. Two species, temperate Posidonia australis and tropical Halodule uninervis, were exposed to a combination of future warming, simulated MHW with subsequent recovery period, and light deprivation in a mesocosm experiment. The leaf metabolome of P. australis was altered under MHW exposure at ambient light while H. uninervis was unaffected. Light deprivation impacted both seagrasses, with combined effects of heat and low light causing greater alterations in leaf metabolism. There was no MHW recovery in P. australis. Conversely, the heat-resistant leaf metabolome of H. uninervis showed recovery of sugars and intermediates of the tricarboxylic acid cycle under combined heat and low light exposure, suggesting adaptive strategies to long-term light deprivation. Overall, this research highlights how metabolomics can be used to study the metabolic pathways of seagrasses, identifies early indicators of environmental stress and analyses the effects of environmental factors on plant metabolism and health.


Assuntos
Alismatales , Água do Mar , Ecossistema , Alismatales/metabolismo , Metabolômica , Oceanos e Mares
2.
Front Plant Sci ; 15: 1309956, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344183

RESUMO

Introduction: Ocean warming combined with extreme climatic events, such as marine heatwaves and flash flooding events, threaten seagrasses globally. How seagrasses cope with these challenges is uncertain, particularly for range-edge populations of species such as Posidonia australis in Shark Bay, Western Australia. Analyzing gene expression while manipulating multiple stressors provides insight into the genetic response and resilience of seagrasses to climate change. We conducted a gene expression study on a polyploid clone of P. australis during an 18-week mesocosm experiment to assess the responses to single and combined future climate change-associated stressors. Methods: Plants were exposed to (1) future ocean warming temperature (baseline +1.5°C) followed by a simulated marine heat wave (baseline +5.5°C), (2) light deprivation simulating observed marine heatwave driven turbidity (95% shade) at baseline temperatures, or (3) both stressors simultaneously. Basal leaf meristems were sampled for gene expression analysis using RNA-seq at four time points during the experiment. Weighted gene co-expression network analysis, GO term enrichment, and KEGG pathway enrichment analyses were used to identify stress responses. Results: Shaded plants showed specific gene enrichment for shade avoidance (programmed cell death) after three weeks of stress, and before any heated tanks showed a specific heat response. Shaded plants were positively correlated with programmed cell death and stress-related processes at the end of the experiment. Once ocean warming temperatures (+1.5°C) were in effect, gene enrichment for heat stress (e.g., ROS scavenging and polyamine metabolism) was present. Vitamin B processes, RNA polymerase II processes. and light-related meristematic phase changes were expressed with the addition of simulated MHW. Heated plants showed meristematic growth signatures as well as trehalose and salicylic acid metabolism. Brassinosteroid-related processes were significantly enriched in all stressor treatments at all time points, except for the isolated heat-stressed plants three weeks after stressor initiation. Discussion: Gene expression responses to the interaction between heat waves and turbidity-induced light reduction support the observed geographical scale mortality in seagrasses observed for P. australis in Shark Bay, suggesting that even this giant polyploid clone will be negatively impacted by more extreme climate change projections.

3.
Biol Open ; 11(8)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35876771

RESUMO

Plants endure environmental stressors via adaptation and phenotypic plasticity. Studying these mechanisms in seagrasses is extremely relevant as they are important primary producers and functionally significant carbon sinks. These mechanisms are not well understood at the tissue level in seagrasses. Using RNA-seq, we generated transcriptome sequences from tissue of leaf, basal leaf meristem and root organs of Posidonia australis, establishing baseline in situ transcriptomic profiles for tissues across a salinity gradient. Samples were collected from four P. australis meadows growing in Shark Bay, Western Australia. Analysis of gene expression showed significant differences between tissue types, with more variation among leaves than meristem or roots. Gene ontology enrichment analysis showed the differences were largely due to the role of photosynthesis, plant growth and nutrient absorption in leaf, meristem and root organs, respectively. Differential gene expression of leaf and meristem showed upregulation of salinity regulation processes in higher salinity meadows. Our study highlights the importance of considering leaf meristem tissue when evaluating whole-plant responses to environmental change. This article has an associated First Person interview with the first author of the paper.


Assuntos
Salinidade , Transcriptoma , Ontologia Genética , Humanos , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA