Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 14(1): e0206958, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30673712

RESUMO

Increasing human population size and the concomitant expansion of urbanisation significantly impact natural ecosystems and native fauna globally. Successful conservation management relies on precise information on the factors associated with wildlife population decline, which are challenging to acquire from natural populations. Wildlife Rehabilitation Centres (WRC) provide a rich source of this information. However, few researchers have conducted large-scale longitudinal studies, with most focussing on narrow taxonomic ranges, suggesting that WRC-associated data remains an underutilised resource, and may provide a fuller understanding of the anthropogenic threats facing native fauna. We analysed admissions and outcomes data from a WRC in Queensland, Australia Zoo Wildlife Hospital, to determine the major factors driving admissions and morbidity of native animals in a region experiencing rapid and prolonged urban expansion. We studied 31,626 admissions of 83 different species of native birds, reptiles, amphibians, marsupials and eutherian mammals from 2006 to 2017. While marsupial admissions were highest (41.3%), admissions increased over time for all species and exhibited seasonal variation (highest in Spring to Summer), consistent with known breeding seasons. Causes for admission typically associated with human influenced activities were dominant and exhibited the highest mortality rates. Car strikes were the most common reason for admission (34.7%), with dog attacks (9.2%), entanglements (7.2%), and cat attacks (5.3%) also high. Admissions of orphaned young and overt signs of disease were significant at 24.6% and 9.7%, respectively. Mortality rates were highest following dog attacks (72.7%) and car strikes (69.1%) and lowest in orphaned animals (22.1%). Our results show that WRC databases offer rich opportunities for wildlife monitoring and provide quantification of the negative impacts of human activities on ecosystem stability and wildlife health. The imminent need for urgent, proactive conservation management to ameliorate the negative impacts of human activities on wildlife is clearly evident from our results.


Assuntos
Animais Selvagens/fisiologia , Animais de Zoológico/fisiologia , Atividades Humanas , Animais , Austrália , Geografia , Hospitais Veterinários , Humanos , Razão de Chances , Risco , Estações do Ano , Especificidade da Espécie
2.
Mol Ecol Resour ; 19(4): 957-969, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30681773

RESUMO

Wildlife diseases are a recognized driver of global biodiversity loss, have substantial economic impacts, and are increasingly becoming a threat to human health. Disease surveillance is critical but remains difficult in the wild due to the substantial costs and potential biases associated with most disease detection methods. Noninvasive scat surveys have been proposed as a health monitoring methodology to overcome some of these limitations. Here, we use the known threat of Chlamydia disease to the iconic, yet vulnerable, koala Phascolarctos cinereus to compare three methods for Chlamydia detection in scats: multiplex quantitative PCR, next generation sequencing, and a detection dog specifically trained on scats from Chlamydia-infected koalas. All three methods demonstrated 100% specificity, while sensitivity was variable. Of particular interest is the variable sensitivity of these diagnostic tests to detect sick individuals (i.e., not only infection as confirmed by Chlamydia-positive swabs, but with observable clinical signs of the disease); for koalas with urogenital tract disease signs, sensitivity was 78% with quantitative PCR, 50% with next generation genotyping and 100% with the detection dog method. This may be due to molecular methods having to rely on high-quality DNA whereas the dog most likely detects volatile organic compounds. The most appropriate diagnostic test will vary with disease prevalence and the specific aims of disease surveillance. Acknowledging that detection dogs might not be easily accessible to all, the future development of affordable and portable "artificial noses" to detect diseases from scats in the field might enable cost-effective, rapid and large-scale disease surveillance.


Assuntos
Bioensaio/métodos , Infecções por Chlamydia/veterinária , Chlamydia/isolamento & purificação , Fezes/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Phascolarctidae , Animais , Chlamydia/genética , Saúde da População , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA