Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982563

RESUMO

Chronic stress causes several pain conditions including fibromyalgia. Its pathophysiological mechanisms are unknown, and the therapy is unresolved. Since the involvement of interleukin-1 (IL-1) has been described in stress and inflammatory pain but no data are available regarding stress-induced pain, we studied its role in a chronic restraint stress (CRS) mouse model. Female and male C57Bl/6J wild-type (WT) and IL-1αß-deficient (knock-out: IL-1 KO) mice were exposed to 6 h of immobilization/day for 4 weeks. Mechanonociception, cold tolerance, behavioral alterations, relative thymus/adrenal gland weights, microglia ionized calcium-binding adaptor molecule 1 (IBA1) and astrocyte glial fibrillary acidic protein (GFAP) integrated density, number and morphological transformation in pain-related brain regions were determined. CRS induced 15-20% mechanical hyperalgesia after 2 weeks in WT mice in both sexes, which was significantly reduced in female but not in male IL-1 KOs. Increased IBA1+ integrated density in the central nucleus of amygdala, primary somatosensory cortex hind limb representation part, hippocampus cornu ammonis area 3 (CA3) and periaqueductal gray matter (PAG) was present, accompanied by a cell number increase in IBA1+ microglia in stressed female WTs but not in IL-1 KOs. CRS induced morphological changes of GFAP+ astrocytes in WT but not in KO mice. Stress evoked cold hypersensitivity in the stressed animals. Anxiety and depression-like behaviors, thymus and adrenal gland weight changes were detectable in all groups after 2 but not 4 weeks of CRS due to adaptation. Thus, IL-1 mediates chronic stress-induced hyperalgesia in female mice, without other major behavioral alterations, suggesting the analgesic potentials of IL-1 in blocking drugs in stress-related pain syndromes.


Assuntos
Astrócitos , Hiperalgesia , Camundongos , Masculino , Feminino , Animais , Hiperalgesia/metabolismo , Astrócitos/metabolismo , Microglia/metabolismo , Interleucina-1/metabolismo , Dor/metabolismo , Encéfalo/metabolismo
2.
J Pharmacol Exp Ther ; 372(2): 224-236, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31594792

RESUMO

Agonists at the δ opioid receptor are known to be potent antihyperalgesics in chronic pain models and effective in models of anxiety and depression. However, some δ opioid agonists have proconvulsant properties while tolerance to the therapeutic effects can develop. Previous evidence indicates that different agonists acting at the δ opioid receptor differentially engage signaling and regulatory pathways with significant effects on behavioral outcomes. As such, interest is now growing in the development of biased agonists as a potential means to target specific signaling pathways and potentially improve the therapeutic profile of δ opioid agonists. Here, we report on PN6047 (3-[[4-(dimethylcarbamoyl)phenyl]-[1-(thiazol-5-ylmethyl)-4-piperidylidene]methyl]benzamide), a novel G protein-biased and selective δ opioid agonist. In cell-based assays, PN6047 fully engages G protein signaling but is a partial agonist in both the arrestin recruitment and internalization assays. PN6047 is effective in rodent models of chronic pain but shows no detectable analgesic tolerance following prolonged treatment. In addition, PN6047 exhibited antidepressant-like activity in the forced swim test, and importantly, the drug had no effect on chemically induced seizures. PN6047 did not exhibit reward-like properties in the conditioned place preference test or induce respiratory depression. Thus, δ opioid ligands with limited arrestin signaling such as PN6047 may be therapeutically beneficial in the treatment of chronic pain states. SIGNIFICANCE STATEMENT: PN6047 (3-[[4-(dimethylcarbamoyl)phenyl]-[1-(thiazol-5-ylmethyl)-4-piperidylidene]methyl]benzamide) is a selective, G protein-biased δ opioid agonist with efficacy in preclinical models of chronic pain. No analgesic tolerance was observed after prolonged treatment, and PN6047 does not display proconvulsant activity or other opioid-mediated adverse effects. Our data suggest that δ opioid ligands with limited arrestin signaling will be beneficial in the treatment of chronic pain.


Assuntos
Analgésicos Opioides/metabolismo , Antidepressivos/química , Benzamidas/química , Benzamidas/farmacocinética , Dor Crônica/tratamento farmacológico , Proteínas de Ligação ao GTP/metabolismo , Receptores Opioides delta/metabolismo , Animais , Antidepressivos/administração & dosagem , Antidepressivos/efeitos adversos , Antidepressivos/farmacocinética , Arrestina/metabolismo , Benzamidas/administração & dosagem , Benzamidas/efeitos adversos , Tolerância a Medicamentos , Células HEK293 , Humanos , Masculino , Camundongos , Modelos Animais , Ratos Wistar , Resultado do Tratamento
3.
Int J Mol Sci ; 20(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835716

RESUMO

Somatostatin released from the capsaicin-sensitive sensory nerves mediates analgesic and anti-inflammatory effects via the somatostatin sst4 receptor without endocrine actions. Therefore, sst4 is considered to be a novel target for drug development in pain including chronic neuropathy, which is an emerging unmet medical need. Here, we examined the in silico binding, the sst4-linked G-protein activation on stable receptor expressing cells (1 nM to 10 µM), and the effects of our novel pyrrolo-pyrimidine molecules in mouse inflammatory and neuropathic pain models. All four of the tested compounds (C1-C4) bind to the same binding site of the sst4 receptor with similar interaction energy to high-affinity reference sst4 agonists, and they all induce G-protein activation. C1 is the more efficacious (γ-GTP-binding: 218.2% ± 36.5%) and most potent (EC50: 37 nM) ligand. In vivo testing of the actions of orally administered C1 and C2 (500 µg/kg) showed that only C1 decreased the resiniferatoxin-induced acute neurogenic inflammatory thermal allodynia and mechanical hyperalgesia significantly. Meanwhile, both of them remarkably reduced partial sciatic nerve ligation-induced chronic neuropathic mechanical hyperalgesia after a single oral administration of the 500 µg/kg dose. These orally active novel sst4 agonists exert potent anti-hyperalgesic effect in a chronic neuropathy model, and therefore, they can open promising drug developmental perspectives.


Assuntos
Analgésicos/farmacologia , Analgésicos/uso terapêutico , Neuralgia/tratamento farmacológico , Receptores de Somatostatina/agonistas , Administração Oral , Analgésicos/química , Animais , Células CHO , Doença Crônica , Cricetinae , Cricetulus , Diterpenos/toxicidade , Hiperalgesia/induzido quimicamente , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Inflamação/patologia , Ligantes , Masculino , Camundongos , Simulação de Dinâmica Molecular , Neuralgia/complicações , Neuralgia/patologia , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirróis/química , Pirróis/farmacologia , Pirróis/uso terapêutico , Receptores de Somatostatina/metabolismo
4.
J Neuroinflammation ; 15(1): 335, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30509328

RESUMO

OBJECTIVE: The regulatory role of capsaicin-sensitive peptidergic sensory nerves has been shown in acute inflammation, but little is known about their involvement in T/B-cell driven autoimmune arthritis. This study integratively characterized the function of these nerve endings in the proteoglycan-induced chronic arthritis (PGIA), a translational model of rheumatoid arthritis. METHODS: Peptidergic afferents were defunctionalized by resiniferatoxin (RTX) pretreatment in BALB/c mice, PGIA was induced by repeated antigen challenges. Hind paw volume, arthritis severity, grasping ability and the mechanonociceptive threshold were monitored during the 17-week experiment. Myeloperoxidase activity, vascular leakage and bone turnover were evaluated by in vivo optical imaging. Bone morphology was assessed using micro-CT, the intertarsal small joints were processed for histopathological analysis. RESULTS: Following desensitization of the capsaicin-sensitive afferents, ankle edema, arthritis severity and mechanical hyperalgesia were markedly diminished. Myeloperoxidase activity was lower in the early, but increased in the late phase, whilst plasma leakage and bone turnover were not altered. Desensitized mice displayed similar bone spurs and erosions, but increased trabecular thickness of the tibia and bony ankylosis of the spine. Intertarsal cartilage thickness was not altered in the model, but desensitization increased this parameter in both the non-arthritic and arthritic groups. CONCLUSION: This is the first integrative in vivo functional and morphological characterization of the PGIA mouse model, wherein peptidergic afferents have an important regulatory function. Their overall effect is proinflammatory by increasing acute inflammation, immune cell activity and pain. Meanwhile, their activation decreases spinal ankylosis, arthritis-induced altered trabecularity, and cartilage thickness in small joints.


Assuntos
Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/patologia , Capsaicina/farmacologia , Proteoglicanas/toxicidade , Fármacos do Sistema Sensorial/farmacologia , Limiar Sensorial/efeitos dos fármacos , Animais , Tornozelo/diagnóstico por imagem , Cartilagem/patologia , Modelos Animais de Doenças , Diterpenos/farmacologia , Feminino , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Neurotoxinas/farmacologia , Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Índice de Gravidade de Doença , Coluna Vertebral/diagnóstico por imagem
5.
Brain Behav Immun ; 59: 219-232, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27621226

RESUMO

The tachykinin NK1 receptor was suggested to be involved in psychiatric disorders, but its antagonists have failed to be effective as antidepressants in clinical trials. Hemokinin-1 (HK-1), the newest tachykinin, is present in several brain regions and activates the NK1 receptor similarly to substance P (SP), but acts also through other mechanisms. Therefore, we investigated the roles of the Tac4 gene-derived HK-1 in comparison with SP and neurokinin A (NKA) encoded by the Tac1 gene, as well as the NK1 receptor in anxiety and depression-like behaviors in mice. Mice lacking SP/NKA, HK-1 or the NK1 receptor (Tac1-/-, Tac4-/-, Tacr1-/-, respectively) compared to C57Bl/6 wildtypes (WT), and treatment with the NK1 antagonist CP99994 were used in the experiments. Anxiety was evaluated in the light-dark box (LDB) and the elevated plus maze (EPM), locomotor activity in the open field (OFT) tests. Hedonic behavior was assessed in the sucrose preference test (SPT), depression-like behavior in the tail suspension (TST) and forced swim (FST) tests. FST-induced neuronal responsiveness was evaluated with Fos immunohistochemistry in several stress-related brain regions. In the LDB, Tac4-/- mice spent significantly less, while Tacr1-/- and CP99994-treated mice spent significantly more time in the lit compartment. In the EPM only Tac4-/- showed reduced time in the open arms, but no difference was observed in any other groups. In the OFT Tac4-/- mice showed significantly reduced, while Tac1-/- and Tacr1-/- animals increased motility than the WTs, but CP99994 had no effect. NK1-/- consumed markedly more, while Tac4-/- less sucrose solution compared to WTs. In the TST and FST, Tac4-/- mice showed significantly increased immobility. However, depression-like behavior was decreased both in cases of genetic deletion and pharmacological blockade of the NK1 receptor. FST-induced neuronal activation in different nuclei involved in behavioral and neuroendocrine stress responses was significantly reduced in the brain of Tac4 -/- mice. Our results provide the first evidence for an anxiolytic and anti-depressant-like actions of HK-1 through a presently unknown target-mediated mechanism. Identification of its receptor and/or signaling pathways might open new perspectives for anxiolytic and anti-depressant therapies.


Assuntos
Ansiolíticos/farmacologia , Ansiedade/genética , Depressão/genética , Precursores de Proteínas/genética , Precursores de Proteínas/fisiologia , Taquicininas/genética , Taquicininas/fisiologia , Anedonia , Animais , Ansiedade/psicologia , Depressão/psicologia , Preferências Alimentares , Genes fos , Elevação dos Membros Posteriores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Receptores da Neurocinina-1/genética , Substância P/genética
6.
Inflamm Res ; 65(9): 725-36, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27251170

RESUMO

OBJECTIVE, DESIGN: Mast cell tryptase (MCT) is elevated in arthritic joints, but its direct effects are not known. Here, we investigated MCT-evoked acute inflammatory and nociceptive mechanisms with behavioural, in vivo imaging and immunological techniques. MATERIAL AND SUBJECTS: Neurogenic inflammation involving capsaicin-sensitive afferents, transient receptor potential vanilloid 1 receptor (TRPV1), substance P (SP), neurokinin A (NKA) and their NK1 tachykinin receptor were studied using gene-deleted mice compared to C57Bl/6 wildtypes (n = 5-8/group). TREATMENT: MCT was administered intraarticularly or topically (20 µl, 12 µg/ml). Capsaicin-sensitive afferents were defunctionalized with the TRPV1 agonist resiniferatoxin (RTX; 30-70-100 µg/kg s.c. pretreatment). METHODS: Knee diameter was measured with a caliper, synovial perfusion with laser Doppler imaging, mechanonociception with aesthesiometry and weight distribution with incapacitance tester over 6 h. Cytokines and neuropeptides were determined with immunoassays. RESULTS: MCT induced synovial vasodilatation, oedema, impaired weight distribution and mechanical hyperalgesia, but cytokine or neuropeptide levels were not altered at the 6-h timepoint. Hyperaemia was reduced in RTX-treated and TRPV1-deleted animals, and oedema was absent in NK1-deficient mice. Hyperalgesia was decreased in SP/NKA- and NK1-deficient mice, weight bearing impairment in RTX-pretreated, TRPV1- and NK1-deficient animals. CONCLUSIONS: MCT evokes synovial hyperaemia, oedema, hyperalgesia and spontaneous pain. Capsaicin-sensitive afferents and TRPV1 receptors are essential for vasodilatation, while tachykinins mediate oedema and pain.


Assuntos
Artrite/induzido quimicamente , Edema/induzido quimicamente , Hiperalgesia/induzido quimicamente , Inflamação Neurogênica/induzido quimicamente , Dor/induzido quimicamente , Triptases , Animais , Artrite/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina , Citocinas/metabolismo , Edema/metabolismo , Edema/patologia , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inflamação Neurogênica/metabolismo , Inflamação Neurogênica/patologia , Dor/metabolismo , Dor/patologia , Precursores de Proteínas/genética , Receptor PAR-2/metabolismo , Receptores da Neurocinina-1/genética , Substância P/metabolismo , Canais de Cátion TRPV/genética , Taquicininas/genética , Tato
7.
Brain Behav Immun ; 45: 50-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25524130

RESUMO

OBJECTIVE: The K/BxN serum-transfer arthritis is a widely-used translational mouse model of rheumatoid arthritis, in which the immunological components have thoroughly been investigated. In contrast, little is known about the role of sensory neural factors and the complexity of neuro-immune interactions. Therefore, we analyzed the involvement of capsaicin-sensitive peptidergic sensory nerves in autoantibody-induced arthritis with integrative methodology. METHODS: Arthritogenic K/BxN or control serum was injected to non-pretreated mice or resiniferatoxin (RTX)-pretreated animals where capsaicin-sensitive nerves were inactivated. Edema, touch sensitivity, noxious heat threshold, joint function, body weight and clinical arthritis severity scores were determined repeatedly throughout two weeks. Micro-CT and in vivo optical imaging to determine matrix-metalloproteinase (MMP) and neutrophil-derived myeloperoxidase (MPO) activities, semiquantitative histopathological scoring and radioimmunoassay to measure somatostatin in the joint homogenates were also performed. RESULTS: In RTX-pretreated mice, the autoantibody-induced joint swelling, arthritis severity score, MMP and MPO activities, as well as histopathological alterations were significantly greater compared to non-pretreated animals. Self-control quantification of the bone mass revealed decreased values in intact female mice, but significantly greater arthritis-induced pathological bone formation after RTX-pretreatment. In contrast, mechanical hyperalgesia from day 10 was smaller after inactivating capsaicin-sensitive afferents. Although thermal hyperalgesia did not develop, noxious heat threshold was significantly higher following RTX pretreatment. Somatostatin-like immunoreactivity elevated in the tibiotarsal joints in non-pretreated, which was significantly less in RTX-pretreated mice. CONCLUSIONS: Although capsaicin-sensitive sensory nerves mediate mechanical hyperalgesia in the later phase of autoantibody-induced chronic arthritis, they play important anti-inflammatory roles at least partially through somatostatin release.


Assuntos
Artrite Experimental , Artrite Reumatoide , Diterpenos/farmacologia , Hiperalgesia , Nociceptores/efeitos dos fármacos , Animais , Capsaicina/farmacologia , Modelos Animais de Doenças , Edema , Membro Posterior , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/fisiologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Peroxidase/metabolismo , Espécies Reativas de Oxigênio , Fármacos do Sistema Sensorial/farmacologia , Somatostatina/metabolismo , Canais de Cátion TRPV/agonistas , Tarso Animal/diagnóstico por imagem , Tarso Animal/metabolismo , Tarso Animal/patologia , Microtomografia por Raio-X
8.
Eur Neuropsychopharmacol ; 73: 96-107, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37156112

RESUMO

The Transient Receptor Potential Vanilloid 1 (TRPV1) non-selective cation channel predominantly expressed in primary sensory neurons of the dorsal root and trigeminal ganglia mediates pain and neurogenic inflammation. TRPV1 mRNA and immunoreactivity were described in the central nervous system (CNS), but its precise expression pattern and function have not been clarified. Here we investigated Trpv1 mRNA expression in the mouse brain using ultrasensitive RNAScope in situ hybridization. The role of TRPV1 in anxiety, depression-like behaviors and memory functions was investigated by TRPV1-deficient mice and pharmacological antagonism by AMG9810. Trpv1 mRNA is selectively expressed in the supramammillary nucleus (SuM) co-localized with Vglut2 mRNA, but not with tyrosine hydroxylase immunopositivity demonstrating its presence in glutamatergic, but not dopaminergic neurons. TRPV1-deleted mice exhibited significantly reduced anxiety in the Light-Dark box and depression-like behaviors in the Forced Swim Test, but their performance in the Elevated Plus Maze as well as their spontaneous locomotor activity, memory and learning function in the Radial Arm Maze, Y-maze and Novel Object Recognition test were not different from WTs. AMG9810 (intraperitoneal injection 50 mg/kg) induced anti-depressant, but not anxiolytic effects. It is concluded that TRPV1 in the SuM might have functional relevance in mood regulation and TRPV1 antagonism could be a novel perspective for anti-depressant drugs.


Assuntos
Acrilamidas , Compostos Bicíclicos Heterocíclicos com Pontes , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Antidepressivos/farmacologia , Hipotálamo Posterior/metabolismo , RNA Mensageiro
9.
Biochem Pharmacol ; 209: 115419, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693436

RESUMO

Since the conventional and adjuvant analgesics have limited effectiveness frequently accompanied by serious side effects, development of novel, potent pain killers for chronic neuropathic and inflammatory pain conditions is a big challenge. Somatostatin (SS) regulates endocrine, vascular, immune and neuronal functions, cell proliferation through 5 Gi protein-coupled receptors (SST1-SST5). SS released from the capsaicin-sensitive peptidergic sensory nerves mediates anti-inflammatory and antinociceptive effects without endocrine actions via SST4. The therapeutic use of the native SS is limited by its diverse biological actions and short plasma elimination half-life. Therefore, SST4 selective SS analogues could be promising analgesic and anti-inflammatory drug candidates with new mode of action. TT-232 is a cyclic heptapeptide showing great affinity to SST4 and SST1. Here, we report the in silico SST4 receptor binding mechanism, in vitro binding (competition assay) and cAMP- decreasing effect of TT-232 in SST4-expressing CHO cells, as well as its analgesic and anti-inflammatory actions in chronic neuropathic pain and arthritis models using wildtype and SST4-deficient mice. TT-232 binds to SST4 with similar interaction energy (-11.03 kcal/mol) to the superagonist J-2156, displaces somatostatin from SST4 binding (10 nM to 30 µM) and inhibits forskolin-stimulated cAMP accumulation (EC50: 371.6 ± 58.03 nmol; Emax: 78.63 ± 2.636 %). Its i.p. injection (100, 200 µg/kg) results in significant, 35.7 % and 50.4 %, analgesic effects upon single administration in chronic neuropathic pain and repeated injection in arthritis models in wildtype, but not in SST4-deficient mice. These results provide evidence that the analgesic effect of TT-232 is mediated by SST4 activation, which might open novel drug developmental potentials. Chemical compounds Chemical compounds studied in this article TT-232 (PubChem CID: 74053735).


Assuntos
Artrite , Neuralgia , Cricetinae , Camundongos , Animais , Cricetulus , Somatostatina/metabolismo , Somatostatina/farmacologia , Receptores de Somatostatina/metabolismo , Analgésicos/uso terapêutico , Anti-Inflamatórios/farmacologia , Neuralgia/tratamento farmacológico , Artrite/tratamento farmacológico
10.
Front Mol Neurosci ; 16: 1186279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965042

RESUMO

The tachykinin hemokinin-1 (HK-1) is involved in immunological processes, inflammation, and pain. Although the neurokinin 1 receptor (NK1R) is described as its main target, several effects are mediated by currently unidentified receptor(s). The role of HK-1 in pain is controversial, depending on the involvement of peripheral and central sensitization mechanisms in different models. We earlier showed the ability of HK-1 to activate the trigeminovascular system, but the mechanisms need to be clarified. Therefore, in this study, we investigated HK-1-induced transcriptomic alterations in cultured rat trigeminal ganglion (TRG) primary sensory neurons. HK-1 was applied for 6 or 24 h in 1 µM causing calcium-influx in these neurons, 500 nM not inducing calcium-entry was used for comparison. Next-generation sequencing was performed on the isolated RNA, and transcriptomic changes were analyzed to identify differentially expressed (DE) genes. Functional analysis was performed for gene annotation using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome databases. NK1R and Neurokinin receptor 2 (NK2R) were not detected. Neurokinin receptor 3 (NK3R) was around the detection limit, which suggests the involvement of other NKR isoforms or other receptors in HK-1-induced sensory neuronal activation. We found protease-activated receptor 1 (PAR1) and epidermal growth factor receptor (EGFR) as DE genes in calcium signaling. The transmembrane protein anthrax toxin receptor 2 (ANTXR2), a potential novel pain-related target, was upregulated. Acid-sensing ion channel 1; 3 (Asic1,3), N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors decreased, myelin production and maintenance related genes (Mbp, Pmp2, Myef2, Mpz) and GNDF changed by HK-1 treatment. Our data showed time and dose-dependent effects of HK-1 in TRG cell culture. Result showed calcium signaling as altered event, however, we did not detect any of NK receptors. Presumably, the activation of TRG neurons is independent of NK receptors. ANTXR2 is a potential new target, PAR-1 has also important role in pain, however their connection to HK-1 is unknown. These findings might highlight new targets or key mediators to solve how HK-1 acts on TRG.

11.
Sci Rep ; 13(1): 20030, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973885

RESUMO

The Tac4 gene-derived hemokinin-1 (HK-1) binds to the NK1 receptor, similarly to Substance P, and plays a role in acute stress reactions and pain transmission in mice. Here we investigated Tac4 mRNA expression in stress and pain-related regions and its involvement in chronic restraint stress-evoked behavioral changes and pain using Tac4 gene-deleted (Tac4-/-) mice compared to C57Bl/6 wildtypes (WT). Tac4 mRNA was detected by in situ hybridization RNAscope technique. Touch sensitivity was assessed by esthesiometry, cold tolerance by paw withdrawal latency from 0°C water. Anxiety was evaluated in the light-dark box (LDB) and open field test (OFT), depression-like behavior in the tail suspension test (TST). Adrenal and thymus weights were measured at the end of the experiment. We found abundant Tac4 expression in the hypothalamic-pituitary-adrenal axis, but Tac4 mRNA was also detected in the hippocampus, amygdala, somatosensory and piriform cortices in mice, and in the frontal regions and the amygdala in humans. In Tac4-/- mice of both sexes, stress-induced mechanical, but not cold hyperalgesia was significantly decreased compared to WTs. Stress-induced behavioral alterations were mild or absent in male WT animals, while significant changes of these parameters could be detected in females. Thymus weight decrease can be observed in both sexes. Higher baseline anxiety and depression-like behaviors were detected in male but not in female HK-1-deficient mice, highlighting the importance of investigating both sexes in preclinical studies. We provided the first evidence for the potent nociceptive and stress regulating effects of HK-1 in chronic restraint stress paradigm. Identification of its targets might open new perspectives for therapy of stress-induced pain.


Assuntos
Dor Crônica , Sistema Hipotálamo-Hipofisário , Humanos , Masculino , Animais , Feminino , Camundongos , Sistema Hipófise-Suprarrenal , Restrição Física , RNA Mensageiro/genética , Estresse Psicológico/complicações
12.
Front Immunol ; 14: 1182278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234175

RESUMO

Objective: Despite intensive research on rheumatoid arthritis, the pathomechanism of the disease is still not fully understood and the treatment has not been completely resolved. Previously we demonstrated that the GTPase-activating protein, ARHGAP25 has a crucial role in the regulation of basic phagocyte functions. Here we investigate the role of ARHGAP25 in the complex inflammatory process of autoantibody-induced arthritis. Methods: Wild-type and ARHGAP25 deficient (KO) mice on a C57BL/6 background, as well as bone marrow chimeric mice, were treated i.p. with the K/BxN arthritogenic or control serum, and the severity of inflammation and pain-related behavior was measured. Histology was prepared, leukocyte infiltration, cytokine production, myeloperoxidase activity, and superoxide production were determined, and comprehensive western blot analysis was conducted. Results: In the absence of ARHGAP25, the severity of inflammation, joint destruction, and mechanical hyperalgesia significantly decreased, similarly to phagocyte infiltration, IL-1ß, and MIP-2 levels in the tibiotarsal joint, whereas superoxide production or myeloperoxidase activity was unchanged. We observed a significantly mitigated phenotype in KO bone marrow chimeras as well. In addition, fibroblast-like synoviocytes showed comparable expression of ARHGAP25 to neutrophils. Significantly reduced ERK1/2, MAPK, and I-κB protein signals were detected in the arthritic KO mouse ankles. Conclusion: Our findings suggest that ARHGAP25 has a key role in the pathomechanism of autoantibody-induced arthritis in which it regulates inflammation via the I-κB/NF-κB/IL-1ß axis with the involvement of both immune cells and fibroblast-like synoviocytes.


Assuntos
Artrite Experimental , Superóxidos , Animais , Camundongos , Peroxidase/efeitos adversos , Camundongos Endogâmicos C57BL , Inflamação
13.
Nat Genet ; 55(11): 1820-1830, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37919453

RESUMO

Osteoporotic fracture is among the most common and costly of diseases. While reasonably heritable, its genetic determinants have remained elusive. Forearm fractures are the most common clinically recognized osteoporotic fractures with a relatively high heritability. To establish an atlas of the genetic determinants of forearm fractures, we performed genome-wide association analyses including 100,026 forearm fracture cases. We identified 43 loci, including 26 new fracture loci. Although most fracture loci associated with bone mineral density, we also identified loci that primarily regulate bone quality parameters. Functional studies of one such locus, at TAC4, revealed that Tac4-/- mice have reduced mechanical bone strength. The strongest forearm fracture signal, at WNT16, displayed remarkable bone-site-specificity with no association with hip fractures. Tall stature and low body mass index were identified as new causal risk factors for fractures. The insights from this atlas may improve fracture prediction and enable therapeutic development to prevent fractures.


Assuntos
Antebraço , Fraturas Ósseas , Animais , Camundongos , Estudo de Associação Genômica Ampla , Fraturas Ósseas/genética , Densidade Óssea/genética , Fatores de Risco
14.
Br J Pharmacol ; 179(6): 1146-1186, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34822719

RESUMO

Major depressive disorder is a leading cause of disability worldwide. Because conventional therapies are ineffective in many patients, novel strategies are needed to overcome treatment-resistant depression (TRD). Limiting factors of successful drug development in the last decades were the lack of (1) knowledge of pathophysiology, (2) translational animal models and (3) objective diagnostic biomarkers. Here, we review novel drug targets and drug candidates currently investigated in Phase I-III clinical trials. The most promising approaches are inhibition of glutamatergic neurotransmission by NMDA and mGlu5 receptor antagonists, modulation of the opioidergic system by κ receptor antagonists, and hallucinogenic tryptamine derivates. The only registered drug for TRD is the NMDA receptor antagonist, S-ketamine, but add-on therapies with second-generation antipsychotics, certain nutritive, anti-inflammatory and neuroprotective agents seem to be effective. Currently, there is an intense research focus on large-scale, high-throughput omics and neuroimaging studies. These results might provide new insights into molecular mechanisms and potential novel therapeutic strategies.


Assuntos
Transtorno Depressivo Maior , Transtorno Depressivo Resistente a Tratamento , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Desenvolvimento de Medicamentos , Humanos
15.
Pharmaceuticals (Basel) ; 15(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35745590

RESUMO

Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases. Its therapy is often challenging, even in the era of biologicals. Previously, we observed the anti-inflammatory effects of garlic-derived organic polysulfide dimethyl trisulfide (DMTS). Some of these effects were mediated by activation of the TRPA1 ion channel. TRPA1 was mostly expressed in a subset of nociceptor neurons. We decided to investigate the action of DMTS in K/BxN serum-transfer arthritis, which is a relevant model of RA. TRPA1 gene knockout (KO) and wild-type (WT) mice were used. The interaction of DMTS and TRPA1 was examined using a patch clamp in CHO cells. Arthritis was characterized by mechanical hyperalgesia, paw swelling, movement range of the ankle joint, hanging performance, plasma extravasation rate, myeloperoxidase activity, and histological changes in the tibiotarsal joint. DMTS activated TRPA1 channels dose-dependently. DMTS treatment reduced paw swelling and plasma extravasation in both TRPA1 WT and KO animals. DMTS-treated TRPA1 KO animals developed milder collagen deposition in the inflamed joints than WT ones. TRPA1 WT mice did not exhibit significant cartilage damage compared to ones administered a vehicle. We concluded that DMTS and related substances might evolve into novel complementary therapeutic aids for RA patients.

16.
Front Pharmacol ; 11: 594479, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519457

RESUMO

The tachykinin hemokinin-1 (HK-1) is involved in immune cell development and inflammation, but little is known about its function in pain. It acts through the NK1 tachykinin receptor, but several effects are mediated by a yet unidentified target. Therefore, we investigated the role and mechanism of action of HK-1 in arthritis models of distinct mechanisms with special emphasis on pain. Arthritis was induced by i.p. K/BxN serum (passive transfer of inflammatory cytokines, autoantibodies), intra-articular mast cell tryptase or Complete Freund's Adjuvant (CFA, active immunization) in wild type, HK-1- and NK1-deficient mice. Mechanical- and heat hyperalgesia determined by dynamic plantar esthesiometry and increasing temperature hot plate, respectively, swelling measured by plethysmometry or micrometry were significantly reduced in HK-1-deleted, but not NK1-deficient mice in all models. K/BxN serum-induced histopathological changes (day 14) were also decreased, but early myeloperoxidase activity detected by luminescent in vivo imaging increased in HK-1-deleted mice similarly to the CFA model. However, vasodilation and plasma protein extravasation determined by laser Speckle and fluorescent imaging, respectively, were not altered by HK-1 deficiency in any models. HK-1 induced Ca2+-influx in primary sensory neurons, which was also seen in NK1-deficient cells and after pertussis toxin-pretreatment, but not in extracellular Ca2+-free medium. These are the first results showing that HK-1 mediates arthritic pain and cellular, but not vascular inflammatory mechanisms, independently of NK1 activation. HK-1 activates primary sensory neurons presumably via Ca2+ channel-linked receptor. Identifying its target opens new directions to understand joint pain leading to novel therapeutic opportunities.

17.
Front Pharmacol ; 11: 601887, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33815096

RESUMO

Background: Somatostatin released from the capsaicin-sensitive sensory nerves mediates analgesic and anti-inflammatory effects via its receptor subtype 4 (SST4) without influencing endocrine functions. Therefore, SST4 is considered to be a novel target for drug development in pain, especially chronic neuropathy which is a great unmet medical need. Purpose and Experimental Approach: Here, we examined the in silico binding, SST4-linked G protein activation and ß-arrestin activation on stable SST4 expressing cells and the effects of our novel pyrrolo-pyrimidine molecules (20, 100, 500, 1,000, 2,000 µg·kg-1) on partial sciatic nerve ligation-induced traumatic mononeuropathic pain model in mice. Key Results: The novel compounds bind to the high affinity binding site of SST4 the receptor and activate the G protein. However, unlike the reference SST4 agonists NNC 26-9100 and J-2156, they do not induce ß-arrestin activation responsible for receptor desensitization and internalization upon chronic use. They exert 65-80% maximal anti-hyperalgesic effects in the neuropathy model 1 h after a single oral administration of 100-500 µg·kg-1 doses. Conclusion and Implications: The novel orally active compounds show potent and effective SST4 receptor agonism in vitro and in vivo. All four novel ligands proved to be full agonists based on G protein activation, but failed to recruit ß-arrestin. Based on their potent antinociceptive effect in the neuropathic pain model following a single oral administration, they are promising candidates for drug development.

18.
Geroscience ; 41(5): 643-654, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31327098

RESUMO

Expression of the transient receptor potential ankyrin 1 (TRPA1) receptor has been demonstrated not only in the dorsal root and trigeminal ganglia but also in different brain regions (e.g., hippocampus, hypothalamus, and cortex). However, data concerning their role in neurodegenerative and age-related diseases of the CNS is still indistinct. The aim of our study was to investigate the potential role of TRPA1 in a mouse model of senile dementia. For the investigation of changes during aging, we used male young (3-4-month-old) and old (18-month-old) wild-type (TRPA1+/+;WT) and TRPA1 receptor gene-deleted (TRPA1-/-) mice. Novel object recognition (NOR) test as well as Y maze (YM), radial arm maze (RAM), and Morris water maze (MWM) tests were used to assess the decline of memory and learning skills. In the behavioral studies, significant memory loss was detected in aged TRPA1+/+ mice with the NOR and RAM, but there was no difference measured by YM and MWM tests regarding the age and gene. TRPA1-/- showed significantly reduced memory loss, which could be seen as higher discrimination index in the NOR and less exploration time in the RAM. Furthermore, young TRPA1-/- animals showed significantly less reference memory error in the RAM and notably higher mobility in NOR, RAM, and YM compared with the age-matched WTs. Our present work has provided the first evidence that TRPA1 receptors mediate deteriorating effects in the old age memory decline. Understanding the underlying mechanisms could open new perspectives in the pharmacotherapy of dementia.


Assuntos
Envelhecimento/fisiologia , Demência/fisiopatologia , Canal de Cátion TRPA1/fisiologia , Animais , Demência/genética , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Aprendizagem/fisiologia , Locomoção/fisiologia , Aprendizagem em Labirinto , Transtornos da Memória/genética , Transtornos da Memória/fisiopatologia , Camundongos Knockout , Canal de Cátion TRPA1/genética
19.
Geroscience ; 41(5): 631-641, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30903571

RESUMO

The inhibitory neuropeptide somatostatin regulates several functions in the nervous system including memory. Its concentrations decrease by age leading to functional alterations, but there are little known about the receptorial mechanism. We discovered that somatostatin receptor 4 (sst4) mediates analgesic, anti-depressant, and anti-inflammatory effects without endocrine actions, and it is a unique target for drug development. We investigated the exploratory and locomotor activities and learning and memory functions of male and female sst4gene-deficient mice compared with their wild-types (WT) at ages of 3, 12, 17 months in the Y-maze test, open field test (OFT), radial-arm maze (RAM) test and novel object recognition (NOR) test. Young sst4 gene-deficient females visited, repeated, and missed significantly less arms than the WTs in the RAM; males showed decreased exploration in the NOR. Young mice moved significantly more, spend longer time in OFT center, and visited more arms in the Y-maze than older ones. Young WT females spend significantly longer time in the OFT center, visited, missed and repeated more arms of the RAM than males. Old males found more rewards than females. Young males explored longer the novel object than young females and older males in the NOR; the recognition index was smaller in females. We conclude that aging and sex are important factors of behavioral parameters that should be focused on in such studies. Sst4 is likely to influence locomotion and exploratory behavior only in young mice, but not during normal aging, which is a beneficial feature of a good drug target focusing on the elderly.


Assuntos
Envelhecimento/fisiologia , Comportamento Exploratório/fisiologia , Locomoção/fisiologia , Receptores de Somatostatina/fisiologia , Envelhecimento/genética , Animais , Feminino , Aprendizagem/fisiologia , Masculino , Aprendizagem em Labirinto , Memória de Curto Prazo/fisiologia , Camundongos Knockout , Receptores de Somatostatina/genética , Fatores Sexuais , Memória Espacial/fisiologia
20.
Brain Res Bull ; 147: 165-173, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30664920

RESUMO

The Tac4 gene-derived hemokinin-1 (HK-1) is present in pain-related regions and activates the tachykinin NK1 receptor, but with binding site and signaling pathways different from Substance P (SP). NK1 receptor is involved in nociception, but our earlier data showed that it has no role in chronic neuropathic hyperalgesia, similarly to SP. Furthermore, NK1 antagonists failed in clinical trials as analgesics due to still unknown reasons. Therefore, we investigated the role of HK-1 in pain conditions of distinct mechanisms using genetically modified mice. Chronic neuropathic mechanical and cold hyperalgesia after partial sciatic nerve ligation (PSL) were determined by dynamic plantar aesthesiometry and withdrawal latency from icy water, motor coordination on the accelerating Rotarod. Peripheral nerve growth factor (NGF) production was measured by ELISA, neuronal and glia cell activation by immunohistochemistry in pain-related regions. Acute somatic and visceral chemonocifensive behaviors were assessed after intraplantar formalin or intraperitoneal acetic-acid injection, respectively. Resiniferatoxin-induced inflammatory mechanical and thermal hyperalgesia by aesthesiometry and increasing temperature hot plate. Chronic neuropathic mechanical and cold hypersensitivity were significantly decreased in HK-1 deficient mice. NGF level in the paw homogenates of intact mice were significantly lower in case of HK-1 deletion. However, it significantly increased under neuropathic condition in contrast to wildtype mice, where the higher basal concentration did not show any changes. Microglia, but not astrocyte activation was observed 14 days after PSL in the ipsilateral spinal dorsal horn of wildtype, but not HK-1-deficient mice. However, under neuropathic conditions, the number of GFAP-positive astrocytes was significantly smaller in case of HK-1 deletion. Acute visceral, but not somatic nocifensive behavior, as well as neurogenic inflammatory mechanical and thermal hypersensitivity were significantly reduced by HK-1 deficiency similarly to NK1, but not to SP deletion. We provide evidence for pro-nociceptive role of HK-1, via NK1 receptor activation in acute inflammation models, but differently from SP-mediated actions. Identification of its targets and signaling can open new directions in pain research.


Assuntos
Dor/metabolismo , Taquicininas/genética , Taquicininas/metabolismo , Analgésicos/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptividade/efeitos dos fármacos , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptores da Neurocinina-1/metabolismo , Nervo Isquiático/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Substância P/metabolismo , Taquicininas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA