Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
New Phytol ; 237(2): 532-547, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35838065

RESUMO

The oomycete Albugo candida causes white blister rust, an important disease of Brassica crops. Distinct races of A. candida are defined by their capacity to infect different host plant species. Each A. candida race encodes secreted proteins with a CX2 CX5 G ('CCG') motif that are polymorphic and show presence/absence variation, and are therefore candidate effectors. The White Rust Resistance 4 (WRR4) locus in Arabidopsis thaliana accession Col-0 contains three genes that encode intracellular nucleotide-binding domain leucine-rich repeat immune receptors. The Col-0 alleles of WRR4A and WRR4B confer resistance to multiple A. candida races, although both WRR4A and WRR4B can be overcome by the Col-0-virulent race 4 isolate AcEx1. Comparison of CCG candidate effectors in avirulent and virulent races, and transient co-expression of CCG effectors from four A. candida races in Nicotiana sp. or A. thaliana, revealed CCG effectors that trigger WRR4A- or WRR4B-dependent hypersensitive responses. We found eight WRR4A-recognised CCGs and four WRR4B-recognised CCGs, the first recognised proteins from A. candida for which the cognate immune receptors in A. thaliana are known. This multiple recognition capacity potentially explains the broad-spectrum resistance to several A. candida races conferred by WRR4 paralogues. We further show that of five tested CCGs, three confer enhanced disease susceptibility when expressed in planta, consistent with A. candida CCG proteins being effectors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica , Oomicetos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas NLR/metabolismo , Brassica/metabolismo , Oomicetos/metabolismo , Doenças das Plantas/genética
2.
Plant J ; 104(4): 892-900, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32794614

RESUMO

In plants, race-specific defence against microbial pathogens is facilitated by resistance (R) genes which correspond to specific pathogen avirulence genes. This study reports the cloning of a blackleg R gene from Brassica napus (canola), Rlm9, which encodes a wall-associated kinase-like (WAKL) protein, a newly discovered class of race-specific plant RLK resistance genes. Rlm9 provides race-specific resistance against isolates of Leptosphaeria maculans carrying the corresponding avirulence gene AvrLm5-9, representing only the second WAKL-type R gene described to date. The Rlm9 protein is predicted to be cell membrane-bound and while not conclusive, our work did not indicate direct interaction with AvrLm5-9. Rlm9 forms part of a distinct evolutionary family of RLK proteins in B. napus, and while little is yet known about WAKL function, the Brassica-Leptosphaeria pathosystem may prove to be a model system by which the mechanism of fungal avirulence protein recognition by WAKL-type R genes can be determined.


Assuntos
Brassica napus/genética , Resistência à Doença/genética , Leptosphaeria/patogenicidade , Doenças das Plantas/imunologia , Proteínas Quinases/metabolismo , Brassica napus/imunologia , Brassica napus/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Especificidade da Espécie , Virulência
3.
Mol Plant Microbe Interact ; 32(8): 1001-1012, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30938576

RESUMO

Our study investigated disease resistance in the Brassica napus-Leptosphaeria maculans pathosystem using a combination of laser microdissection, dual RNA sequencing, and physiological validations of large-scale gene sets. The use of laser microdissection improved pathogen detection and identified putative L. maculans effectors and lytic enzymes operative during host colonization. Within 24 h of inoculation, we detected large shifts in gene activity in resistant cotyledons associated with jasmonic acid and calcium signaling pathways that accelerated the plant defense response. Sequencing data were validated through the direct quantification of endogenous jasmonic acid levels. Additionally, resistance against L. maculans was abolished when the calcium chelator EGTA was applied to the inoculation site, providing physiological evidence of the role of calcium in B. napus immunity against L. maculans. We integrated gene expression data with all available information on cis-regulatory elements and transcription factor binding affinities to better understand the gene regulatory networks underpinning plant resistance to hemibiotrophic pathogens. These in silico analyses point to early cellular reprogramming during host immunity that are coordinated by CAMTA, BZIP, and bHLH transcription factors. Together, we provide compelling genetic and physiological evidence into the programming of plant resistance against fungal pathogens.


Assuntos
Ascomicetos , Brassica napus , Resistência à Doença , Interações Hospedeiro-Patógeno , Transcriptoma , Ascomicetos/fisiologia , Brassica napus/genética , Brassica napus/imunologia , Brassica napus/microbiologia , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia
4.
BMC Genomics ; 18(1): 266, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28356071

RESUMO

BACKGROUND: Sclerotinia sclerotiorum causes stem rot in Brassica napus, which leads to lodging and severe yield losses. Although recent studies have explored significant progress in the characterization of individual S. sclerotiorum pathogenicity factors, a gap exists in profiling gene expression throughout the course of S. sclerotiorum infection on a host plant. In this study, RNA-Seq analysis was performed with focus on the events occurring through the early (1 h) to the middle (48 h) stages of infection. RESULTS: Transcript analysis revealed the temporal pattern and amplitude of the deployment of genes associated with aspects of pathogenicity or virulence during the course of S. sclerotiorum infection on Brassica napus. These genes were categorized into eight functional groups: hydrolytic enzymes, secondary metabolites, detoxification, signaling, development, secreted effectors, oxalic acid and reactive oxygen species production. The induction patterns of nearly all of these genes agreed with their predicted functions. Principal component analysis delineated gene expression patterns that signified transitions between pathogenic phases, namely host penetration, ramification and necrotic stages, and provided evidence for the occurrence of a brief biotrophic phase soon after host penetration. CONCLUSIONS: The current observations support the notion that S. sclerotiorum deploys an array of factors and complex strategies to facilitate host colonization and mitigate host defenses. This investigation provides a broad overview of the sequential expression of virulence/pathogenicity-associated genes during infection of B. napus by S. sclerotiorum and provides information for further characterization of genes involved in the S. sclerotiorum-host plant interactions.


Assuntos
Ascomicetos/fisiologia , Brassica napus/genética , Transcriptoma , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Análise de Componente Principal , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Metabolismo Secundário/genética , Análise de Sequência de RNA , Regulação para Cima
5.
BMC Genomics ; 17: 272, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27036196

RESUMO

BACKGROUND: The protist Plasmodiophora brassicae is a soil-borne pathogen of cruciferous species and the causal agent of clubroot disease of Brassicas including agriculturally important crops such as canola/rapeseed (Brassica napus). P. brassicae has remained an enigmatic plant pathogen and is a rare example of an obligate biotroph that resides entirely inside the host plant cell. The pathogen is the cause of severe yield losses and can render infested fields unsuitable for Brassica crop growth due to the persistence of resting spores in the soil for up to 20 years. RESULTS: To provide insight into the biology of the pathogen and its interaction with its primary host B. napus, we produced a draft genome of P. brassicae pathotypes 3 and 6 (Pb3 and Pb6) that differ in their host range. Pb3 is highly virulent on B. napus (but also infects other Brassica species) while Pb6 infects only vegetable Brassica crops. Both the Pb3 and Pb6 genomes are highly compact, each with a total size of 24.2 Mb, and contain less than 2 % repetitive DNA. Clustering of genome-wide single nucleotide polymorphisms (SNP) of Pb3, Pb6 and three additional re-sequenced pathotypes (Pb2, Pb5 and Pb8) shows a high degree of correlation of cluster grouping with host range. The Pb3 genome features significant reduction of intergenic space with multiple examples of overlapping untranslated regions (UTRs). Dependency on the host for essential nutrients is evident from the loss of genes for the biosynthesis of thiamine and some amino acids and the presence of a wide range of transport proteins, including some unique to P. brassicae. The annotated genes of Pb3 include those with a potential role in the regulation of the plant growth hormones cytokinin and auxin. The expression profile of Pb3 genes, including putative effectors, during infection and their potential role in manipulation of host defence is discussed. CONCLUSION: The P. brassicae genome sequence reveals a compact genome, a dependency of the pathogen on its host for some essential nutrients and a potential role in the regulation of host plant cytokinin and auxin. Genome annotation supported by RNA sequencing reveals significant reduction in intergenic space which, in addition to low repeat content, has likely contributed to the P. brassicae compact genome.


Assuntos
Brassica/parasitologia , Genoma de Protozoário , Interações Hospedeiro-Parasita/genética , Plasmodioforídeos/genética , Arabidopsis , Produtos Agrícolas/parasitologia , Citocininas/metabolismo , DNA de Protozoário/genética , Especificidade de Hospedeiro , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/parasitologia , Análise de Sequência de RNA , Transcriptoma
6.
BMC Plant Biol ; 16(1): 183, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27553246

RESUMO

BACKGROUND: Resistance to the blackleg disease of Brassica napus (canola/oilseed rape), caused by the hemibiotrophic fungal pathogen Leptosphaeria maculans, is determined by both race-specific resistance (R) genes and quantitative resistance loci (QTL), or adult-plant resistance (APR). While the introgression of R genes into breeding material is relatively simple, QTL are often detected sporadically, making them harder to capture in breeding programs. For the effective deployment of APR in crop varieties, resistance QTL need to have a reliable influence on phenotype in multiple environments and be well defined genetically to enable marker-assisted selection (MAS). RESULTS: Doubled-haploid populations produced from the susceptible B. napus variety Topas and APR varieties AG-Castle and AV-Sapphire were analysed for resistance to blackleg in two locations over 3 and 4 years, respectively. Three stable QTL were detected in each population, with two loci appearing to be common to both APR varieties. Physical delineation of three QTL regions was sufficient to identify candidate defense-related genes, including a cluster of cysteine-rich receptor-like kinases contained within a 49 gene QTL interval on chromosome A01. Individual L. maculans isolates were used to define the physical intervals for the race-specific R genes Rlm3 and Rlm4 and to identify QTL common to both field studies and the cotyledon resistance response. CONCLUSION: Through multi-environment QTL analysis we have identified and delineated four significant and stable QTL suitable for MAS of quantitative blackleg resistance in B. napus, and identified candidate genes which potentially play a role in quantitative defense responses to L. maculans.


Assuntos
Ascomicetos/fisiologia , Brassica napus/genética , Doenças das Plantas/genética , Proteínas Quinases/genética , Locos de Características Quantitativas , Brassica napus/imunologia , Brassica napus/microbiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo
7.
BMC Plant Biol ; 14: 387, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25551287

RESUMO

BACKGROUND: The protection of canola (Brassica napus) crops against blackleg disease, caused by the fungal pathogen Leptosphaeria maculans, is largely mediated by race-specific resistance genes (R-genes). While many R-genes effective against blackleg disease have been identified in Brassica species, information of the precise genomic locations of the genes is limited. RESULTS: In this study, the Rlm2 gene for resistance to blackleg, located on chromosome A10 of the B. napus cultivar 'Glacier', was targeted for fine mapping. Molecular markers tightly linked to the gene were developed for use in mapping the resistance locus and defining the physical interval in B. napus. Rlm2 was localised to a 5.8 cM interval corresponding to approximately 873 kb of the B. napus chromosome A10. CONCLUSION: The recently-cloned B. napus R-gene, LepR3, occupies the same region of A10 as Rlm2 and analysis of the putative B. napus and B. rapa genes in the homologous region identified several additional candidate defense-related genes that may control Rlm2 function.


Assuntos
Brassica napus/genética , Brassica napus/microbiologia , Cromossomos de Plantas/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Ascomicetos/fisiologia , Brassica napus/metabolismo , Cruzamento , Mapeamento Cromossômico , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Marcadores Genéticos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo
8.
Annu Rev Phytopathol ; 60: 237-257, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35576591

RESUMO

Canola is an important oilseed crop, providing food, feed, and fuel around the world. However, blackleg disease, caused by the ascomycete Leptosphaeria maculans, causes significant yield losses annually. With the recent advances in genomic technologies, the understanding of the Brassica napus-L. maculans interaction has rapidly increased, with numerous Avr and R genes cloned, setting this system up as a model organism for studying plant-pathogen associations. Although the B. napus-L. maculans interaction follows Flor's gene-for-gene hypothesis for qualitative resistance, it also puts some unique spins on the interaction. This review discusses the current status of the host-pathogen interaction and highlights some of the future gaps that need addressing moving forward.


Assuntos
Ascomicetos , Brassica napus , Brassica , Leptosphaeria , Doenças das Plantas
9.
Sci Rep ; 9(1): 6947, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061421

RESUMO

While our understanding of the genetics underlying the Brassica-Leptosphaeria pathosystem has advanced greatly in the last decade, differences in molecular responses due to interaction between resistance genes and host genetic background has not been studied. We applied RNAseq technology to monitor the transcriptome profiles of Brassica napus (Bn) lines carrying one of four blackleg R genes (Rlm2, Rlm3, LepR1 & LepR2) in Topas or Westar background, during the early stages of infection by a Leptosphaeria maculans (Lm) isolate carrying the corresponding Avr genes. We observed upregulation of host genes involved in hormone signalling, cell wall thickening, response to chitin and glucosinolate production in all R gene lines at 3 day after inoculation (dai) albeit having higher level of expression in LepR1 and Rlm2 than in Rlm3 and LepR2 lines. Bn-SOBIR1 (Suppressor Of BIR1-1), a receptor like kinase (RLK) that forms complex receptor like proteins (RLPs) was highly expressed in LepR1 and Rlm2 at 3 dai. In contrast Bn-SOBIR1 induction was low in Rlm3 line, which could indicate that Rlm3 may function independent of SOBIR1. Expression of Salicylic acid (SA) related defense was enhanced in LepR1 and Rlm2 at 3 dai. In contrast to SA, expression of Bn genes with homology to PDF1.2, a jasmonic acid (JA) pathway marker, were increased in all Rlm and LepR lines at 6 and 9 dai. Effect of host genetic background on induction of defense, was determined by comparison of LepR1 and LepR2 in Topas vs Westar genotype (i.e. T-LepR1 vs W-LepR1 and T-LepR2 vs W-LepR2). In both cases (regardless of R gene) overall number of defense related genes at the earliest time point (3 dai) was higher in Tops compared to Westar. SA and JA markers genes such as PR1 and PDF1.2 were more induced in Topas compared to Westar introgression lines at this time point. Even in the absence of any R gene, effect of Topas genotype in enhanced defense, was also evident by the induction of PDF1.2 that started at a low level at 3 dai and peaked at 6 and 9 dai, while no induction in Westar genotype was observed at any of these time points. Overall, variation in time and intensity of expression of genes related to defense, was clearly dependent on both R gene and the host genotype.


Assuntos
Ascomicetos , Brassica napus/genética , Brassica napus/microbiologia , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Genes de Plantas , Patrimônio Genético , Marcadores Genéticos , Fenótipo , Estresse Fisiológico , Transcriptoma
10.
Mol Plant Microbe Interact ; 21(6): 757-68, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18624640

RESUMO

White blister rust in the Brassicaceae is emerging as a superb model for exploring how plant biodiversity has channeled speciation of biotrophic parasites. The causal agents of white rust across a wide breadth of cruciferous hosts currently are named as variants of a single oomycete species, Albugo candida. The most notable examples include a major group of physiological races that each are economically destructive in a different vegetable or oilseed crop of Brassica juncea (A. candida race 2), B. rapa (race 7), or B. oleracea (race 9); or parasitic on wild crucifers such as Capsella bursa-pastoris (race 4). Arabidopsis thaliana is innately immune to these races of A. candida under natural conditions; however, it commonly hosts its own molecularly distinct subspecies of A. candida (A. candida subsp. arabidopsis). In the laboratory, we have identified several accessions of Arabidopsis thaliana (e.g.,. Ws-3) that can permit varying degrees of rust development following inoculation with A. candida races 2, 4, and 7, whereas race 9 is universally incompatible in Arabidopsis thaliana and nonrusting resistance is the most prevalent outcome of interactions with the other races. Subtle variation in resistance phenotypes is evident, observed initially with an isolate of A. candida race 4, indicating additional genetic variation. Therefore, we used the race 4 isolate for map-based cloning of the first of many expected white rust resistance (WRR) genes. This gene was designated WRR4 and encodes a cytoplasmic toll-interleukin receptor-like nucleotide-binding leucine-rich repeat receptor-like protein that confers a dominant, broad-spectrum white rust resistance in the Arabidopsis thaliana accession Columbia to representative isolates of A. candida races 2, 4, 7, and 9, as verified by transgenic expression of the Columbia allele in Ws-3. The WRR4 protein requires functional expression of the lipase-like protein EDS1 but not the paralogous protein PAD4, and confers full immunity that masks an underlying nonhypersensitive incompatibility in Columbia to A. candida race 4. This residual incompatibility is independent of functional EDS1.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Oomicetos/crescimento & desenvolvimento , Doenças das Plantas/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Imunidade Inata/genética , Imunidade Inata/imunologia , Modelos Genéticos , Mutação , Oomicetos/classificação , Oomicetos/isolamento & purificação , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
11.
PLoS One ; 13(9): e0204124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30235263

RESUMO

Ascochyta blight of lentil is an important fungal disease in many lentil-producing regions of the world causing major yield and grain quality losses. Quick shifts in aggressiveness of the population of the causal agent Ascochyta lentis mandates developing germplasm with novel and durable resistance. In the absence of complete resistance, lentil genotypes CDC Robin and 964a-46 have frequently been used as sources of partial resistance to ascochyta blight and carry non-allelic ascochyta blight resistance genes. RNA-seq analysis was conducted to identify differences in the transcriptome of CDC Robin, 964a-46 and the susceptible check Eston after inoculation with A. lentis. Candidate defense genes differentially expressed among the genotypes had hypothetical functions in various layers of plant defense, including pathogen recognition, phytohormone signaling pathways and downstream defense responses. CDC Robin and 964a-46 activated cell surface receptors (e.g. receptor like kinases) tentatively associated with pathogen-associated molecular patterns (PAMP) recognition and nucleotide-binding site leucine-rich repeat (NBS-LRR) receptors associated with intracellular effector recognition upon A. lentis infection, and differed in their activation of salicylic acid, abscisic acid and jasmonic acid / ethylene signal transduction pathways. These differences were reflected in the differential expression of downstream defense responses such as pathogenesis-related proteins, and genes associated with the induction of cell death and cell-wall reinforcement. A significant correlation between expression levels of a selection of genes based on quantitative real-time PCR and their expression levels estimated through RNA-seq demonstrated the technical and analytical accuracy of RNA-seq for identification of genes differentially expressed among genotypes. The presence of different resistance mechanisms in 964a-46 and CDC Robin indicates their value for pyramiding gene leading to more durable resistance to ascochyta blight.


Assuntos
Alelos , Ascomicetos/fisiologia , Resistência à Doença/genética , Genes de Plantas , Lens (Planta)/genética , Lens (Planta)/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Estudos de Associação Genética , Genótipo , Lens (Planta)/imunologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Regulação para Cima/genética
12.
iScience ; 3: 177-191, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-30428318

RESUMO

Leptosphaeria maculans, the causal agent of blackleg disease in canola (Brassica napus), secretes an array of effectors into the host to overcome host defense. Here we present evidence that the L. maculans effector protein AvrLm1 functions as a virulence factor by interacting with the B. napus mitogen-activated protein (MAP) kinase 9 (BnMPK9), resulting in increased accumulation and enhanced phosphorylation of the host protein. Transient expression of BnMPK9 in Nicotiana benthamiana induces cell death, and this phenotype is enhanced in the presence of AvrLm1, suggesting that induction of cell death due to enhanced accumulation and phosphorylation of BnMPK9 by AvrLm1 supports the initiation of necrotrophic phase of L. maculans infection. Stable expression of BnMPK9 in B. napus perturbs hormone signaling, notably salicylic acid response genes, to facilitate L. maculans infection. Our findings provide evidence that a MAP kinase is directly targeted by a fungal effector to modulate plant immunity.

13.
PLoS One ; 13(6): e0198201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856883

RESUMO

Genes coding for nucleotide-binding leucine-rich repeat (LRR) receptors (NLRs) control resistance against intracellular (cell-penetrating) pathogens. However, evidence for a role of genes coding for proteins with LRR domains in resistance against extracellular (apoplastic) fungal pathogens is limited. Here, the distribution of genes coding for proteins with eLRR domains but lacking kinase domains was determined for the Brassica napus genome. Predictions of signal peptide and transmembrane regions divided these genes into 184 coding for receptor-like proteins (RLPs) and 121 coding for secreted proteins (SPs). Together with previously annotated NLRs, a total of 720 LRR genes were found. Leptosphaeria maculans-induced expression during a compatible interaction with cultivar Topas differed between RLP, SP and NLR gene families; NLR genes were induced relatively late, during the necrotrophic phase of pathogen colonization. Seven RLP, one SP and two NLR genes were found in Rlm1 and Rlm3/Rlm4/Rlm7/Rlm9 loci for resistance against L. maculans on chromosome A07 of B. napus. One NLR gene at the Rlm9 locus was positively selected, as was the RLP gene on chromosome A10 with LepR3 and Rlm2 alleles conferring resistance against L. maculans races with corresponding effectors AvrLm1 and AvrLm2, respectively. Known loci for resistance against L. maculans (extracellular hemi-biotrophic fungus), Sclerotinia sclerotiorum (necrotrophic fungus) and Plasmodiophora brassicae (intracellular, obligate biotrophic protist) were examined for presence of RLPs, SPs and NLRs in these regions. Whereas loci for resistance against P. brassicae were enriched for NLRs, no such signature was observed for the other pathogens. These findings demonstrate involvement of (i) NLR genes in resistance against the intracellular pathogen P. brassicae and a putative NLR gene in Rlm9-mediated resistance against the extracellular pathogen L. maculans.


Assuntos
Ascomicetos/fisiologia , Brassica napus/genética , Resistência à Doença/genética , Genes de Plantas , Genoma de Planta , Interações Hospedeiro-Parasita/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plasmodioforídeos/fisiologia , Proteínas/genética , Brassica napus/parasitologia , Estudo de Associação Genômica Ampla , Proteínas de Repetições Ricas em Leucina , Modelos Moleculares , Família Multigênica , Filogenia , Células Vegetais/microbiologia , Células Vegetais/parasitologia , Proteínas de Plantas/química , Proteínas de Plantas/fisiologia , Conformação Proteica , Proteínas/química , Proteínas/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
14.
Mol Plant Pathol ; 17(8): 1196-210, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26679637

RESUMO

Molecular interaction between the causal agent of blackleg disease, Leptosphaeria maculans (Lm), and its host, Brassica napus, is largely unknown. We applied a deep RNA-sequencing approach to gain insight into the pathogenicity mechanisms of Lm and the defence response of B. napus. RNA from the infected susceptible B. napus cultivar Topas DH16516, sampled at 2-day intervals (0-8 days), was sequenced and used for gene expression profiling. Patterns of gene expression regulation in B. napus showed multifaceted defence responses evident by the differential expression of genes encoding the pattern recognition receptor CERK1 (chitin elicitor receptor kinase 1), receptor like proteins and WRKY transcription factors. The up-regulation of genes related to salicylic acid and jasmonic acid at the initial and late stages of infection, respectively, provided evidence for the biotrophic and necrotrophic life stages of Lm during the infection of B. napus cotyledons. Lm transition from biotrophy to necrotropy was also supported by the expression function of Lm necrosis and ethylene-inducing (Nep-1)-like peptide. Genes encoding polyketide synthases and non-ribosomal peptide synthetases, with potential roles in pathogenicity, were up-regulated at 6-8 days after inoculation. Among other plant defence-related genes differentially regulated in response to Lm infection were genes involved in the reinforcement of the cell wall and the production of glucosinolates. Dual RNA-sequencing allowed us to define the Lm candidate effectors expressed during the infection of B. napus. Several candidate effectors suppressed Bax-induced cell death when transiently expressed in Nicotiana benthamaina leaves.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Brassica napus/genética , Brassica napus/microbiologia , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Plântula/genética , Plântula/microbiologia , Bioensaio , Brassica napus/imunologia , Morte Celular , Cotilédone/genética , Cotilédone/microbiologia , Ciclopentanos/metabolismo , Modelos Biológicos , Oxilipinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo , Análise de Sequência de RNA , Proteína X Associada a bcl-2/metabolismo
15.
Front Plant Sci ; 7: 1784, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27990146

RESUMO

Leptosphaeria maculans is a hemibiotrophic fungus that causes blackleg of canola (Brassica napus), one of the most devastating diseases of this crop. In the present study, transcriptome profiling of L. maculans was performed in an effort to understand and define the pathogenicity genes that govern both the biotrophic and the necrotrophic phase of the fungus, as well as those that separate a compatible from an incompatible interaction. For this purpose, comparative RNA-seq analyses were performed on L. maculans isolate D5 at four different time points following inoculation on susceptible cultivar Topas-DH16516 or resistant introgression line Topas-Rlm2. Analysis of 1.6 billion Illumina reads readily identified differentially expressed genes that were over represented by candidate secretory effector proteins, CAZymes, and other pathogenicity genes. Comparisons between the compatible and incompatible interactions led to the identification of 28 effector proteins whose chronology and level of expression suggested a role in the establishment and maintenance of biotrophy with the plant. These included all known Avr genes of isolate D5 along with eight newly characterized effectors. In addition, another 15 effector proteins were found to be exclusively expressed during the necrotrophic phase of the fungus, which supports the concept that L. maculans has a separate and distinct arsenal contributing to each phase. As for CAZymes, they were often highly expressed at 3 dpi but with no difference in expression between the compatible and incompatible interactions, indicating that other factors were necessary to determine the outcome of the interaction. However, their significantly higher expression at 11 dpi in the compatible interaction confirmed that they contributed to the necrotrophic phase of the fungus. A notable exception was LysM genes whose high expression was singularly observed on the susceptible host at 7 dpi. In the case of TFs, their higher expression at 7 and 11 dpi on susceptible Topas support an important role in regulating the genes involved in the different pathogenic phases of L. maculans. In conclusion, comparison of the transcriptome of L. maculans during compatible and incompatible interactions has led to the identification of key pathogenicity genes that regulate not only the fate of the interaction but also lifestyle transitions of the fungus.

16.
Front Plant Sci ; 7: 1771, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965684

RESUMO

Seven blackleg resistance (R) genes (Rlm1, Rlm2, Rlm3, Rlm4, LepR1, LepR2 & LepR3) were each introgressed into a common susceptible B. napus doubled-haploid (DH) line through reciprocal back-crossing, producing single-R gene introgression lines (ILs) for use in the pathological and molecular study of Brassica-Leptosphaeria interactions. The genomic positions of the R genes were defined through molecular mapping and analysis with transgenic L. maculans isolates was used to confirm the identity of the introgressed genes where possible. Using L. maculans isolates of contrasting avirulence gene (Avr) profiles, we preformed extensive differential pathology for phenotypic comparison of the ILs to other B. napus varieties, demonstrating the ILs can provide for the accurate assessment of Avr-R gene interactions by avoiding non-Avr dependant alterations to resistance responses which can occur in some commonly used B. napus varieties. Whole-genome SNP-based assessment allowed us to define the donor parent introgressions in each IL and provide a strong basis for comparative molecular dissection of the pathosystem.

17.
Front Plant Sci ; 6: 933, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579176

RESUMO

The fungus Leptosphaeria maculans (L. maculans) is the causal agent of blackleg disease of canola/oilseed rape (Brassica napus) worldwide. We previously reported cloning of the B. napus blackleg resistance gene, LepR3, which encodes a receptor-like protein. LepR3 triggers localized cell death upon recognition of its cognate Avr protein, AvrLm1. Here, we exploited the Nicotiana benthamiana model plant to investigate the recognition mechanism of AvrLm1 by LepR3. Co-expression of the LepR3/AvrLm1 gene pair in N. benthamiana resulted in development of a hypersensitive response (HR). However, a truncated AvrLm1 lacking its indigenous signal peptide was compromised in its ability to induce LepR3-mediated HR, indicating that AvrLm1 is perceived by LepR3 extracellularly. Structure-function analysis of the AvrLm1 protein revealed that the C-terminal region of AvrLm1 was required for LepR3-mediated HR in N. benthamiana and for resistance to L. maculans in B. napus. LepR3 was shown to be physically interacting with the B. napus receptor like kinase, SOBIR1 (BnSOBIR1). Silencing of NbSOBIR1 or NbSERK3 (BAK1) compromised LepR3-AvrLm1-dependent HR in N. benthamiana, suggesting that LepR3-mediated resistance to L. maculans in B. napus requires SOBIR1 and BAK1/SERK3. Using this model system, we determined that BnSOBIR1 and SERK3/BAK1 are essential partners in the LepR3 signaling complex and were able to define the AvrLm1 effector domain.

18.
Mol Plant Pathol ; 16(7): 699-709, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25492575

RESUMO

Five avirulence genes from Leptosphaeria maculans, the causal agent of blackleg of canola (Brassica napus), have been identified previously through map-based cloning. In this study, a comparative genomic approach was used to clone the previously mapped AvrLm2. Given the lack of a presence-absence gene polymorphism coincident with the AvrLm2 phenotype, 36 L. maculans isolates were resequenced and analysed for single-nucleotide polymorphisms (SNPs) in predicted small secreted protein-encoding genes present within the map interval. Three SNPs coincident with the AvrLm2 phenotype were identified within LmCys1, previously identified as a putative effector-coding gene. Complementation of a virulent isolate with LmCys1, as the candidate AvrLm2 allele, restored the avirulent phenotype on Rlm2-containing B. napus lines. AvrLm2 encodes a small cysteine-rich protein with low similarity to other proteins in the public databases. Unlike other avirulence genes, AvrLm2 resides in a small GC island within an AT-rich isochore of the genome, and was never found to be deleted completely in virulent isolates.


Assuntos
Ascomicetos/genética , Brassica napus/microbiologia , Genes Fúngicos , Sequência de Aminoácidos , Sequência de Bases , DNA Fúngico , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único
19.
Sci Rep ; 2: 874, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166857

RESUMO

Plant viral expression vectors are advantageous for high-throughput functional characterization studies of genes due to their capability for rapid, high-level transient expression of proteins. We have constructed a series of tobacco mosaic virus (TMV) based vectors that are compatible with Gateway technology to enable rapid assembly of expression constructs and exploitation of ORFeome collections. In addition to the potential of producing recombinant protein at grams per kilogram FW of leaf tissue, these vectors facilitate either N- or C-terminal fusions to a broad series of epitope tag(s) and fluorescent proteins. We demonstrate the utility of these vectors in affinity purification, immunodetection and subcellular localisation studies. We also apply the vectors to characterize protein-protein interactions and demonstrate their utility in screening plant pathogen effectors. Given its broad utility in defining protein properties, this vector series will serve as a useful resource to expedite gene characterization efforts.


Assuntos
Vetores Genéticos , Proteínas de Plantas , Plantas/genética , Vírus do Mosaico do Tabaco/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/virologia , Proteínas Recombinantes/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA