Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 31(17): 1754-1769, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982759

RESUMO

The Bcl-2 family protein Bim triggers mitochondrial apoptosis. Bim is expressed in nonapoptotic cells at the mitochondrial outer membrane, where it is activated by largely unknown mechanisms. We found that Bim is regulated by formation of large protein complexes containing dynein light chain 1 (DLC1). Bim rapidly inserted into cardiolipin-containing membranes in vitro and recruited DLC1 to the membrane. Bim binding to DLC1 induced the formation of large Bim complexes on lipid vesicles, on isolated mitochondria, and in intact cells. Native gel electrophoresis and gel filtration showed Bim-containing mitochondrial complexes of several hundred kilodaltons in all cells tested. Bim unable to form complexes was consistently more active than complexed Bim, which correlated with its substantially reduced binding to anti-apoptotic Bcl-2 proteins. At endogenous levels, Bim surprisingly bound only anti-apoptotic Mcl-1 but not Bcl-2 or Bcl-XL, recruiting only Mcl-1 into large complexes. Targeting of DLC1 by RNAi in human cell lines induced disassembly of Bim-Mcl-1 complexes and the proteasomal degradation of Mcl-1 and sensitized the cells to the Bcl-2/Bcl-XL inhibitor ABT-737. Regulation of apoptosis at mitochondria thus extends beyond the interaction of monomers of proapoptotic and anti-apoptotic Bcl-2 family members but involves more complex structures of proteins at the mitochondrial outer membrane, and targeting complexes may be a novel therapeutic strategy.


Assuntos
Apoptose/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Dineínas/metabolismo , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Animais , Proteína 11 Semelhante a Bcl-2/genética , Células CACO-2 , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Células HeLa , Humanos , Células MCF-7 , Camundongos , Ligação Proteica , Multimerização Proteica/genética , Estabilidade Proteica , Interferência de RNA , Proteína X Associada a bcl-2/genética
2.
Entropy (Basel) ; 25(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38136546

RESUMO

On the capital market, price movements of stock corporations can be observed independent of overall market developments as a result of company-specific news, which suggests the occurrence of a sudden risk event. In recent years, numerous concepts from statistical physics have been transferred to econometrics to model these effects and other issues, e.g., in socioeconomics. Like other studies, we extend the approaches based on the "buy" and "sell" positions of agents (investors' stance) with a third "hold" position. We develop the corresponding theory within the framework of the microcanonical and canonical ensembles for an ideal agent system and apply it to a capital market example. We thereby design a procedure to estimate the required model parameters from time series on the capital market. The aim is the appropriate modeling and the one-step-ahead assessment of the effect of a sudden risk event. From a one-step-ahead performance comparison with selected benchmark approaches, we infer that the model is well-specified and the model parameters are well determined.

3.
Nat Immunol ; 10(3): 257-65, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19182807

RESUMO

The mechanisms by which cytokine signals prevent the activation and mitochondrial targeting of the proapoptotic protein Bax are unclear. Here we show, using primary human eosinophils, that in the absence of the prosurvival cytokines granulocyte-macrophage colony-stimulating factor and interleukin 5, Bax spontaneously underwent activation and initiated mitochondrial disruption. Inhibition of Bax resulted in less eosinophil apoptosis, even in the absence of cytokines. Granulocyte-macrophage colony-stimulating factor induced activation of the kinase Erk1/2, which phosphorylated Thr167 of Bax; this facilitated new interaction of Bax with the prolyl isomerase Pin1. Blockade of Pin1 led to cleavage and mitochondrial translocation of Bax and caspase activation, regardless of the presence of cytokines. Our findings indicate that Pin1 is a key mediator of prosurvival signaling and is a regulator of Bax function.


Assuntos
Eosinófilos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Interleucina-5/imunologia , Peptidilprolil Isomerase/imunologia , Proteína X Associada a bcl-2/imunologia , Morte Celular , Sobrevivência Celular , Células Cultivadas , Eosinófilos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Interleucina-5/metabolismo , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/metabolismo , Fosforilação , Transporte Proteico , Proteína X Associada a bcl-2/metabolismo
4.
J Hepatol ; 73(6): 1347-1359, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32598967

RESUMO

BACKGROUND & AIMS: Selective elimination of virus-infected hepatocytes occurs through virus-specific CD8 T cells recognizing peptide-loaded MHC molecules. Herein, we report that virus-infected hepatocytes are also selectively eliminated through a cell-autonomous mechanism. METHODS: We generated recombinant adenoviruses and genetically modified mouse models to identify the molecular mechanisms determining TNF-induced hepatocyte apoptosis in vivo and used in vivo bioluminescence imaging, immunohistochemistry, immunoblot analysis, RNAseq/proteome/phosphoproteome analyses, bioinformatic analyses, mitochondrial function tests. RESULTS: We found that TNF precisely eliminated only virus-infected hepatocytes independently of local inflammation and activation of immune sensory receptors. TNF receptor I was equally relevant for NF-kB activation in healthy and infected hepatocytes, but selectively mediated apoptosis in infected hepatocytes. Caspase 8 activation downstream of TNF receptor signaling was dispensable for apoptosis in virus-infected hepatocytes, indicating an unknown non-canonical cell-intrinsic pathway promoting apoptosis in hepatocytes. We identified a unique state of mitochondrial vulnerability in virus-infected hepatocytes as the cause for this non-canonical induction of apoptosis through TNF. Mitochondria from virus-infected hepatocytes showed normal biophysical and bioenergetic functions but were characterized by reduced resilience to calcium challenge. In the presence of unchanged TNF-induced signaling, reactive oxygen species-mediated calcium release from the endoplasmic reticulum caused mitochondrial permeability transition and apoptosis, which identified a link between extrinsic death receptor signaling and cell-intrinsic mitochondrial-mediated caspase activation. CONCLUSION: Our findings reveal a novel concept in immune surveillance by identifying a cell-autonomous defense mechanism that selectively eliminates virus-infected hepatocytes through mitochondrial permeability transition. LAY SUMMARY: The liver is known for its unique immune functions. Herein, we identify a novel mechanism by which virus-infected hepatocytes can selectively eliminate themselves through reduced mitochondrial resilience to calcium challenge.


Assuntos
Caspase 8/metabolismo , Hepatócitos , Mitocôndrias Hepáticas , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Animais , Apoptose/imunologia , Sinalização do Cálcio , Células Cultivadas , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Camundongos , Mitocôndrias Hepáticas/imunologia , Mitocôndrias Hepáticas/metabolismo , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
5.
EMBO Rep ; 19(2): 244-256, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29335245

RESUMO

The acetyltransferase TIP60 is regulated by phosphorylation, and we have previously shown that phosphorylation of TIP60 on S86 by GSK-3 promotes p53-mediated induction of the BCL-2 protein PUMA. TIP60 phosphorylation by GSK-3 requires a priming phosphorylation on S90, and here, we identify CDK9 as a TIP60S90 kinase. We demonstrate that a phosphorylation-deficient mutant, TIP60S90A, exhibits reduced interaction with chromatin, histone 3 and RNA Pol II, while its association with the TIP60 complex subunit EPC1 is not affected. Consistently, we find a diminished association of TIP60S90A with the MYC gene. We show that cells expressing TIP60S90A, but also TIP60S86A, which retains S90 phosphorylation, exhibit reduced histone 4 acetylation and proliferation. Thus, our data indicate that, during transcription, phosphorylation of TIP60 at two sites has different regulatory effects on TIP60, whereby S90 phosphorylation controls association with the transcription machinery, and S86 phosphorylation is regulating TIP60 HAT activity.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Lisina Acetiltransferase 5/metabolismo , Transcrição Gênica , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Lisina Acetiltransferase 5/química , Modelos Biológicos , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , RNA Polimerase II/metabolismo , Serina/química , Fatores de Transcrição/metabolismo
6.
Mol Cell ; 42(5): 584-96, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21658600

RESUMO

Activation of p53 by DNA damage results in either cell-cycle arrest, allowing DNA repair and cell survival, or induction of apoptosis. As these opposite outcomes are both mediated by p53 stabilization, additional mechanisms to determine this decision must exist. Here, we show that glycogen synthase kinase-3 (GSK-3) is required for the p53-mediated induction of the proapoptotic BH3 only-protein PUMA, an essential mediator of p53-induced apoptosis. Inhibition of GSK-3 protected from cell death induced by DNA damage and promoted increased long-term cell survival. We demonstrate that GSK-3 phosphorylates serine 86 of the p53-acetyltransferase Tip60. A Tip60(S86A) mutant was less active to induce p53 K120 acetylation, histone 4 acetylation, and expression of PUMA. Our data suggest that GSK-3 mediated Tip60S86 phosphorylation provides a link between PI3K signaling and the choice for or against apoptosis induction by p53.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Quinase 3 da Glicogênio Sintase/fisiologia , Histona Acetiltransferases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Acetilação , Linhagem Celular Tumoral , Dano ao DNA , Quinase 3 da Glicogênio Sintase/metabolismo , Histona Acetiltransferases/química , Histona Acetiltransferases/fisiologia , Humanos , Lisina Acetiltransferase 5 , Fosforilação , Regiões Promotoras Genéticas
7.
EMBO Rep ; 17(10): 1485-1497, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458237

RESUMO

K63- and Met1-linked ubiquitylation are crucial posttranslational modifications for TNF receptor signaling. These non-degradative ubiquitylations are counteracted by deubiquitinases (DUBs), such as the enzyme CYLD, resulting in an appropriate signal strength, but the regulation of this process remains incompletely understood. Here, we describe an interaction partner of CYLD, SPATA2, which we identified by a mass spectrometry screen. We find that SPATA2 interacts via its PUB domain with CYLD, while a PUB interaction motif (PIM) of SPATA2 interacts with the PUB domain of the LUBAC component HOIP SPATA2 is required for the recruitment of CYLD to the TNF receptor signaling complex upon TNFR stimulation. Moreover, SPATA2 acts as an allosteric activator for the K63- and M1-deubiquitinase activity of CYLD In consequence, SPATA2 substantially attenuates TNF-induced NF-κB and MAPK signaling. Conversely, SPATA2 is required for TNF-induced complex II formation, caspase activation, and apoptosis. Thus, this study identifies SPATA2 as an important factor in the TNF signaling pathway with a substantial role for the effects mediated by the cytokine.


Assuntos
NF-kappa B/metabolismo , Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Sistemas CRISPR-Cas , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular , Enzima Desubiquitinante CYLD , Técnicas de Inativação de Genes , Marcação de Genes , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas/genética , Proteínas Supressoras de Tumor/deficiência , Ubiquitina-Proteína Ligases/metabolismo
8.
Cell Tissue Res ; 369(1): 27-39, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28560694

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a widespread genetic disorder in the Western world and is characterized by cystogenesis that often leads to end-stage renal disease (ESRD). Mutations in the pkd1 gene, encoding for polycystin-1 (PC1) and its interaction partner pkd2, encoding for polycystin-2 (PC2), are the main drivers of this disease. PC1 and PC2 form a multiprotein membrane complex at cilia sites of the plasma membrane and at intracellular membranes. This complex mediates calcium influx and stimulates various signaling pathways regulating cell survival, proliferation and differentiation. The molecular consequences of pkd1 and pkd2 mutations are still a matter of debate. In particular, the ways in which the cysts are initially formed and progress throughout the disease are unknown. The mechanisms proposed to play a role include enhanced cell proliferation, increased apoptotic cell death and diminished autophagy. In this review, we summarize our current understanding about the contribution of apoptosis to cystogenesis and ADPKD. We present the animal models and the tools and methods that have been created to analyze this process. We also critically review the data that are in favor or against the involvement of apoptosis in disease generation. We argue that apoptosis is probably not the sole driver of cystogenesis but that a cooperative action of cell death, compensatory cell proliferation and perturbed autophagy gradually establish the disease. Finally, we propose novel strategies for uncovering the mode of action of PC1 and PC2 and suggest means by which their dysfunction or loss of expression lead to cystogenesis and ADPKD development.


Assuntos
Apoptose/genética , Sinalização do Cálcio/genética , Mutação , Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Animais , Humanos , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
9.
J Immunol ; 192(3): 1171-83, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24391214

RESUMO

Semliki Forest virus (SFV) requires RNA replication and Bax/Bak for efficient apoptosis induction. However, cells lacking Bax/Bak continue to die in a caspase-dependent manner. In this study, we show in both mouse and human cells that this Bax/Bak-independent pathway involves dsRNA-induced innate immune signaling via mitochondrial antiviral signaling (MAVS) and caspase-8. Bax/Bak-deficient or Bcl-2- or Bcl-xL-overexpressing cells lacking MAVS or caspase-8 expression are resistant to SFV-induced apoptosis. The signaling pathway triggered by SFV does neither involve death receptors nor the classical MAVS effectors TNFR-associated factor-2, IRF-3/7, or IFN-ß but the physical interaction of MAVS with caspase-8 on mitochondria in a FADD-independent manner. Consistently, caspase-8 and -3 activation are reduced in MAVS-deficient cells. Thus, after RNA virus infection MAVS does not only elicit a type I antiviral response but also recruits caspase-8 to mitochondria to mediate caspase-3 activation and apoptosis in a Bax/Bak-independent manner.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Apoptose/fisiologia , Caspase 8/fisiologia , Efeito Citopatogênico Viral/fisiologia , Mitocôndrias/fisiologia , Vírus da Floresta de Semliki/fisiologia , Animais , Caspase 3/metabolismo , RNA Helicases DEAD-box/fisiologia , Ativação Enzimática , Proteína de Domínio de Morte Associada a Fas/fisiologia , Fibroblastos/virologia , Células HEK293/virologia , Células HeLa/virologia , Humanos , Helicase IFIH1 Induzida por Interferon , Camundongos , Mitocôndrias/enzimologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Viral/genética , Transdução de Sinais , Replicação Viral , Proteína bcl-X/metabolismo
10.
J Cell Sci ; 126(Pt 17): 4015-25, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23788428

RESUMO

When NF-κB activation or protein synthesis is inhibited, tumor necrosis factor alpha (TNFα) can induce apoptosis through Bax- and Bak-mediated mitochondrial outer membrane permeabilization (MOMP) leading to caspase-3 activation. Additionally, previous studies have implicated lysosomal membrane permeability (LMP) and formation of reactive oxygen species (ROS) as early steps of TNFα-induced apoptosis. However, how these two events connect to MOMP and caspase-3 activation has been largely debated. Here, we present the novel finding that LMP induced by the addition of TNFα plus cycloheximide (CHX), the release of lysosomal cathepsins and ROS formation do not occur upstream but downstream of MOMP and require the caspase-3-mediated cleavage of the p75 NDUFS1 subunit of respiratory complex I. Both a caspase non-cleavable p75 mutant and the mitochondrially localized antioxidant MitoQ prevent LMP mediated by TNFα plus CHX and partially interfere with apoptosis induction. Moreover, LMP is completely blocked in cells deficient in both Bax and Bak, Apaf-1, caspase-9 or both caspase-3 and -7. Thus, after MOMP, active caspase-3 exerts a feedback action on complex I to produce ROS. ROS then provoke LMP, cathepsin release and further caspase activation to amplify TNFα apoptosis signaling.


Assuntos
Caspase 3/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Complexo I de Transporte de Elétrons/metabolismo , NADH Desidrogenase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose , Fator Apoptótico 1 Ativador de Proteases/deficiência , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Caspase 3/deficiência , Caspase 3/genética , Caspase 7/deficiência , Caspase 7/genética , Caspase 9/deficiência , Caspase 9/metabolismo , Catepsina B/deficiência , Catepsina B/genética , Catepsina L/deficiência , Catepsina L/genética , Membrana Celular/metabolismo , Cicloeximida/farmacologia , Ativação Enzimática , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , NADH Desidrogenase/biossíntese , NADH Desidrogenase/genética , Compostos Organofosforados/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Espécies Reativas de Oxigênio , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/deficiência , Proteína X Associada a bcl-2/metabolismo
11.
Nature ; 460(7258): 1035-9, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19626005

RESUMO

FAS (also called APO-1 and CD95) and its physiological ligand, FASL, regulate apoptosis of unwanted or dangerous cells, functioning as a guardian against autoimmunity and cancer development. Distinct cell types differ in the mechanisms by which the 'death receptor' FAS triggers their apoptosis. In type I cells, such as lymphocytes, activation of 'effector caspases' by FAS-induced activation of caspase-8 suffices for cell killing, whereas in type II cells, including hepatocytes and pancreatic beta-cells, caspase cascade amplification through caspase-8-mediated activation of the pro-apoptotic BCL-2 family member BID (BH3 interacting domain death agonist) is essential. Here we show that loss of XIAP (X-chromosome linked inhibitor of apoptosis protein) function by gene targeting or treatment with a second mitochondria-derived activator of caspases (SMAC, also called DIABLO; direct IAP-binding protein with low pI) mimetic drug in mice rendered hepatocytes and beta-cells independent of BID for FAS-induced apoptosis. These results show that XIAP is the critical discriminator between type I and type II apoptosis signalling and suggest that IAP inhibitors should be used with caution in cancer patients with underlying liver conditions.


Assuntos
Apoptose , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Receptor fas/metabolismo , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/deficiência , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Materiais Biomiméticos/farmacologia , Inibidores de Caspase , Ativação Enzimática , Proteína Ligante Fas/metabolismo , Feminino , Hepatite/metabolismo , Hepatite/patologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Timo/citologia , Timo/efeitos dos fármacos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/deficiência , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Receptor fas/antagonistas & inibidores , Receptor fas/imunologia
12.
Brief Bioinform ; 13(3): 365-76, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22016404

RESUMO

The number of mathematical models for biological pathways is rapidly growing. In particular, Boolean modelling proved to be suited to describe large cellular signalling networks. Systems biology is at the threshold to holistic understanding of comprehensive networks. In order to reach this goal, connection and integration of existing models of parts of cellular networks into more comprehensive network models is necessary. We discuss model combination approaches for Boolean models. Boolean modelling is qualitative rather than quantitative and does not require detailed kinetic information. We show that these models are useful precursors for large-scale quantitative models and that they are comparatively easy to combine. We propose modelling standards for Boolean models as a prerequisite for smooth model integration. Using these standards, we demonstrate the coupling of two logical models on two different examples concerning cellular interactions in the liver. In the first example, we show the integration of two Boolean models of two cell types in order to describe their interaction. In the second example, we demonstrate the combination of two models describing different parts of the network of a single cell type. Combination of partial models into comprehensive network models will take systems biology to the next level of understanding. The combination of logical models facilitated by modelling standards is a valuable example for the next step towards this goal.


Assuntos
Hepatócitos/metabolismo , Modelos Teóricos , Transdução de Sinais , Apoptose , Fígado/metabolismo , Biologia de Sistemas
13.
Cell Mol Life Sci ; 70(16): 3013-27, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23475110

RESUMO

Bax and Bak (Bax/Bak) are essential pro-apoptotic proteins of the Bcl-2 family that trigger mitochondrial outer membrane permeabilization (MOMP) in a Bcl-2/Bcl-xL-inhibitable manner. We recently discovered a new stress-related function for Bax/Bak-regulation of nuclear protein redistribution (NPR) from the nucleus to cytoplasm. This effect was independent of Bax/Bak N-terminus exposure and not inhibited by Bcl-xL over-expression. Here, we studied the molecular mechanism governing this novel non-canonical response. Wild-type (WT) and mutant versions of Bax were re-expressed in Bax/Bak double-knockout mouse embryonic fibroblasts and their ability to promote NPR, apoptotic events, and changes in lamin A mobility was examined. Our results show that, in this system, Bax expression was sufficient to restore NPR such as in WT cells undergoing apoptosis. This activity of Bax was uncoupled from cytochrome c release from the mitochondria (indicative of MOMP) and required its membrane localization, α helices 5/6, and the Bcl-2 homology 3 (BH3) domain. Moreover, enrichment of Bax in the nuclear envelope by the so-called Klarsicht/ANC-1/Syne-1 homology domain effectively triggered NPR as in WT Bax, but without inducing MOMP or cell death. Bax-induced NPR was associated with impairment in lamin A mobility, implying a connection between these two nuclear envelope-associated events. Overall, the results indicate a new MOMP-independent, stress-induced Bax function on the nuclear envelope.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Apoptose/fisiologia , Caspases/metabolismo , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Células Cultivadas , Citocromos c/metabolismo , Proteínas do Citoesqueleto , Fibroblastos/metabolismo , Lamina Tipo A/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Estrutura Terciária de Proteína/fisiologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/metabolismo
14.
J Biol Chem ; 287(12): 9112-27, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22277657

RESUMO

Bax is kept inactive in the cytosol by refolding its C-terminal transmembrane domain into the hydrophobic binding pocket. Although energetic calculations predicted this conformation to be stable, numerous Bax binding proteins were reported and suggested to further stabilize inactive Bax. Unfortunately, most of them have not been validated in a physiological context on the endogenous level. Here we use gel filtration analysis of the cytosol of primary and established cells to show that endogenous, inactive Bax runs 20-30 kDa higher than recombinant Bax, suggesting Bax dimerization or the binding of a small protein. Dimerization was excluded by a lack of interaction of differentially tagged Bax proteins and by comparing the sizes of dimerized recombinant Bax with cytosolic Bax on blue native gels. Surprisingly, when analyzing cytosolic Bax complexes by high sensitivity mass spectrometry after anti-Bax immunoprecipitation or consecutive purification by gel filtration and blue native gel electrophoresis, we detected only one protein, called p23 hsp90 co-chaperone, which consistently and specifically co-purified with Bax. However, this protein could not be validated as a crucial inhibitory Bax binding partner as its over- or underexpression did not show any apoptosis defects. By contrast, cytosolic Bax exhibits a slight molecular mass shift on SDS-PAGE as compared with recombinant Bax, which suggests a posttranslational modification and/or a structural difference between the two proteins. We propose that in most healthy cells, cytosolic endogenous Bax is a monomeric protein that does not necessarily need a binding partner to keep its pro-apoptotic activity in check.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Citosol/metabolismo , Oxirredutases Intramoleculares/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Células Cultivadas , Citosol/química , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/genética , Camundongos , Prostaglandina-E Sintases , Ligação Proteica , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/genética
15.
J Virol ; 86(16): 8713-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22674984

RESUMO

The T cell granule exocytosis pathway is essential to control hepatotropic lymphocytic choriomeningitis virus strain WE (LCMV-WE) but also contributes to the observed pathology in mice. Although effective antiviral T cell immunity and development of viral hepatitis are strictly dependent on perforin and granzymes, the molecular basis underlying induction of functionally competent virus-immune T cells, including participation of the innate immune system, is far from being resolved. We demonstrate here that LCMV-immune T cells of interleukin-1 receptor (IL-1R)-deficient mice readily express transcripts for perforin and granzymes but only translate perforin, resulting in the lack of proapoptotic potential in vitro. LCMV is not cleared in IL-1R-deficient mice, and yet the infected mice develop neither splenomegaly nor hepatitis. These results demonstrate that IL-1R signaling is central to the induction of proapoptotic CD8 T cell immunity, including viral clearance and associated tissue injuries in LCMV infection.


Assuntos
Infecções por Arenaviridae/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Receptores de Interleucina-1/imunologia , Animais , Infecções por Arenaviridae/patologia , Infecções por Arenaviridae/virologia , Modelos Animais de Doenças , Hepatite/imunologia , Hepatite/patologia , Hepatite/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-1/deficiência , Esplenomegalia/imunologia , Esplenomegalia/patologia , Esplenomegalia/virologia
16.
Arch Toxicol ; 87(8): 1315-530, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23974980

RESUMO

This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.


Assuntos
Técnicas de Cultura/métodos , Hepatócitos/citologia , Inativação Metabólica , Fígado/citologia , Fígado/fisiologia , Testes de Toxicidade/métodos , Animais , Técnicas de Cocultura , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Fígado/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Toxicogenética
17.
Cell Rep ; 42(1): 111961, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640323

RESUMO

SPATA2 mediates the recruitment of CYLD to immune receptor complexes by bridging the interaction of CYLD with the linear ubiquitylation assembly complex (LUBAC) component HOIP. Whether SPATA2 exhibits functions independently of CYLD is unclear. Here, we show that, while Cyld-/- and Spata2-/- mice are viable, double mutants exhibit highly penetrant perinatal lethality, indicating independent functions of SPATA2 and CYLD. Cyld-/-Spata2-/- fibroblasts show increased M1-linked TNFR1-SC ubiquitylation and, similar to Cyld-/-Spata2-/- macrophages and intestinal epithelial cells, elevated pro-inflammatory gene expression compared with Cyld-/- or Spata2-/- cells. We show that SPATA2 competes with OTULIN for binding to HOIP via its PUB-interacting motif (PIM) and its zinc finger domain, thereby promoting autoubiquitylation of LUBAC. Consistently, increased pro-inflammatory signaling in Cyld-/-Spata2-/- cells depends on the presence of OTULIN. Our data therefore indicate that SPATA2 counteracts, independently of CYLD, the deubiquitylation of LUBAC by OTULIN and thereby attenuates LUBAC activity and pro-inflammatory signaling.


Assuntos
Transdução de Sinais , Fatores de Transcrição , Animais , Camundongos , Ubiquitinação , Fatores de Transcrição/metabolismo , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Enzima Desubiquitinante CYLD/metabolismo
18.
Cell Death Differ ; 30(4): 885-896, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36418547

RESUMO

Regulated cell death (RCD) plays an important role in the progression of viral replication and particle release in cells infected by herpes simplex virus-1 (HSV-1). However, the kind of RCD (apoptosis, necroptosis, others) and the resulting cytopathic effect of HSV-1 depends on the cell type and the species. In this study, we further investigated the molecular mechanisms of apoptosis induced by HSV-1. Although a role of caspase-8 has previously been suggested, we now clearly show that caspase-8 is required for HSV-1-induced apoptosis in a FADD-/death receptor-independent manner in both mouse embryo fibroblasts (MEF) and human monocytes (U937). While wild-type (wt) MEFs and U937 cells exhibited increased caspase-8 and caspase-3 activation and apoptosis after HSV-1 infection, respective caspase-8-deficient (caspase-8-/-) cells were largely impeded in any of these effects. Unexpectedly, caspase-8-/- MEF and U937 cells also showed less virus particle release associated with increased autophagy as evidenced by higher Beclin-1 and lower p62/SQSTM1 levels and increased LC3-I to LC3-II conversion. Confocal and electron microscopy revealed that HSV-1 stimulated a strong perinuclear multivesicular body response, resembling increased autophagy in caspase-8-/- cells, entrapping virions in cellular endosomes. Pharmacological inhibition of autophagy by wortmannin restored the ability of caspase-8-/- cells to release viral particles in similar amounts as in wt cells. Altogether our results support a non-canonical role of caspase-8 in both HSV-1-induced apoptosis and viral particle release through autophagic regulation.


Assuntos
Herpesvirus Humano 1 , Animais , Camundongos , Humanos , Herpesvirus Humano 1/metabolismo , Caspase 8/metabolismo , Apoptose , Autofagia , Vírion/metabolismo , Caspase 3/metabolismo
19.
Cell Death Differ ; 30(5): 1097-1154, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100955

RESUMO

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.


Assuntos
Apoptose , Caspases , Animais , Humanos , Apoptose/genética , Morte Celular , Caspases/genética , Caspases/metabolismo , Carcinogênese , Mamíferos/metabolismo
20.
Biochim Biophys Acta ; 1813(4): 584-96, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21130123

RESUMO

An important mechanism in apoptotic regulation is changes in the subcellular distribution of pro- and anti-apoptotic proteins. Among the proteins that change in their localization and may promote apoptosis are nuclear proteins. Several of these nuclear proteins such as p53, Nur77, histone H1.2, and nucleophosmin were reported to accumulate in the cytosol and/or mitochondria and to promote the mitochondrial apoptotic pathway in response to apoptotic stressors. In this review, we will discuss the functions of these and other nuclear proteins in promoting the mitochondrial apoptotic pathway, the mechanisms that regulate their accumulation in the cytosol and/or mitochondria and the potential role of Bax and Bak in this process. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA