Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 569(7758): 729-733, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118510

RESUMO

In mammals, the emergence of totipotency after fertilization involves extensive rearrangements of the spatial positioning of the genome1,2. However, the contribution of spatial genome organization to the regulation of developmental programs is unclear3. Here we generate high-resolution maps of genomic interactions with the nuclear lamina (a filamentous meshwork that lines the inner nuclear membrane) in mouse pre-implantation embryos. We reveal that nuclear organization is not inherited from the maternal germline but is instead established de novo shortly after fertilization. The two parental genomes establish lamina-associated domains (LADs)4 with different features that converge after the 8-cell stage. We find that the mechanism of LAD establishment is unrelated to DNA replication. Instead, we show that paternal LAD formation in zygotes is prevented by ectopic expression of Kdm5b, which suggests that LAD establishment may be dependent on remodelling of H3K4 methylation. Our data suggest a step-wise assembly model whereby early LAD formation precedes consolidation of topologically associating domains.


Assuntos
Posicionamento Cromossômico , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Genoma/fisiologia , Lâmina Nuclear/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Feminino , Fertilização , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/citologia , Oócitos/metabolismo , Zigoto/citologia , Zigoto/metabolismo
2.
Genes Dev ; 30(6): 611-21, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980186

RESUMO

In mammals, epigenetic reprogramming, the acquisition and loss of totipotency, and the first cell fate decision all occur within a 3-d window after fertilization from the one-cell zygote to the formation of the blastocyst. These processes are poorly understood in molecular detail, yet this is an essential prerequisite to uncover principles of stem cells, chromatin biology, and thus regenerative medicine. A unique feature of preimplantation development is the drastic genome-wide changes occurring to nuclear architecture. From studying somatic and in vitro cultured embryonic stem cells (ESCs) it is becoming increasingly established that the three-dimensional (3D) positions of genomic loci relative to each other and to specific compartments of the nucleus can act on the regulation of gene expression, potentially driving cell fate. However, the functionality, mechanisms, and molecular characteristics of the changes in nuclear organization during preimplantation development are only now beginning to be unraveled. Here, we discuss the peculiarities of nuclear compartments and chromatin organization during mammalian preimplantation development in the context of the transition from totipotency to pluripotency.


Assuntos
Núcleo Celular/metabolismo , Desenvolvimento Embrionário/fisiologia , Animais , Linhagem da Célula , Cromatina/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos
3.
Genes Dev ; 29(12): 1256-70, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26109049

RESUMO

DNA methylation is essential for protecting the mammalian germline against transposons. When DNA methylation-based transposon control is defective, meiotic chromosome pairing is consistently impaired during spermatogenesis: How and why meiosis is vulnerable to transposon activity is unknown. Using two DNA methylation-deficient backgrounds, the Dnmt3L and Miwi2 mutant mice, we reveal that DNA methylation is largely dispensable for silencing transposons before meiosis onset. After this, it becomes crucial to back up to a developmentally programmed H3K9me2 loss. Massive retrotransposition does not occur following transposon derepression, but the meiotic chromatin landscape is profoundly affected. Indeed, H3K4me3 marks gained over transcriptionally active transposons correlate with formation of SPO11-dependent double-strand breaks and recruitment of the DMC1 repair enzyme in Dnmt3L(-/-) meiotic cells, whereas these features are normally exclusive to meiotic recombination hot spots. Here, we demonstrate that DNA methylation restrains transposons from adopting chromatin characteristics amenable to meiotic recombination, which we propose prevents the occurrence of erratic chromosomal events.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Elementos de DNA Transponíveis/genética , Meiose/genética , Recombinação Genética/genética , Animais , Proteínas Argonautas/genética , DNA (Citosina-5-)-Metiltransferases/genética , Instabilidade Genômica/genética , Histonas/genética , Histonas/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Camundongos , Mutação , Espermatogênese/genética
4.
Nucleic Acids Res ; 44(3): e28, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26429970

RESUMO

The role of uracil in genomic DNA has been recently re-evaluated. It is now widely accepted to be a physiologically important DNA element in diverse systems from specific phages to antibody maturation and Drosophila development. Further relevant investigations would largely benefit from a novel reliable and fast method to gain quantitative and qualitative information on uracil levels in DNA both in vitro and in situ, especially since current techniques does not allow in situ cellular detection. Here, starting from a catalytically inactive uracil-DNA glycosylase protein, we have designed several uracil sensor fusion proteins. The designed constructs can be applied as molecular recognition tools that can be detected with conventional antibodies in dot-blot applications and may also serve as in situ uracil-DNA sensors in cellular techniques. Our method is verified on numerous prokaryotic and eukaryotic cellular systems. The method is easy to use and can be applied in a high-throughput manner. It does not require expensive equipment or complex know-how, facilitating its easy implementation in any basic molecular biology laboratory. Elevated genomic uracil levels from cells of diverse genetic backgrounds and/or treated with different drugs can be demonstrated also in situ, within the cell.


Assuntos
DNA/química , Uracila/análise , Catálise , Linhagem Celular Tumoral , Humanos , Técnicas In Vitro
5.
Proc Natl Acad Sci U S A ; 112(47): 14635-40, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26561583

RESUMO

During meiosis, homologous chromosomes associate to form the synaptonemal complex (SC), a structure essential for fertility. Information about the epigenetic features of chromatin within this structure at the level of superresolution microscopy is largely lacking. We combined single-molecule localization microscopy (SMLM) with quantitative analytical methods to describe the epigenetic landscape of meiotic chromosomes at the pachytene stage in mouse oocytes. DNA is found to be nonrandomly distributed along the length of the SC in condensed clusters. Periodic clusters of repressive chromatin [trimethylation of histone H3 at lysine (Lys) 27 (H3K27me3)] are found at 500-nm intervals along the SC, whereas one of the ends of the SC displays a large and dense cluster of centromeric histone mark [trimethylation of histone H3 at Lys 9 (H3K9me3)]. Chromatin associated with active transcription [trimethylation of histone H3 at Lys 4 (H3K4me3)] is arranged in a radial hair-like loop pattern emerging laterally from the SC. These loops seem to be punctuated with small clusters of H3K4me3 with an average spread larger than their periodicity. Our findings indicate that the nanoscale structure of the pachytene chromosomes is constrained by periodic patterns of chromatin marks, whose function in recombination and higher order genome organization is yet to be elucidated.


Assuntos
Cromatina/química , Cromatina/metabolismo , Cromossomos de Mamíferos/metabolismo , Microscopia/métodos , Estágio Paquíteno , Animais , Centrômero/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Modelos Biológicos , Complexo Sinaptonêmico/metabolismo , Transcrição Gênica
6.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2777-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286861

RESUMO

The authors respond to a comment by Alvisi & Jans [(2014), Acta Cryst. D70, 2775-2776] on the article Phosphorylation adjacent to the nuclear localization signal of human dUTPase abolishes nuclear import: structural and mechanistic insights [Róna et al. (2013), Acta Cryst. D69, 2495-2505].


Assuntos
Pirofosfatases/metabolismo , alfa Carioferinas/metabolismo , Humanos
7.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 12): 2495-505, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24311590

RESUMO

Phosphorylation adjacent to nuclear localization signals (NLSs) is involved in the regulation of nucleocytoplasmic transport. The nuclear isoform of human dUTPase, an enzyme that is essential for genomic integrity, has been shown to be phosphorylated on a serine residue (Ser11) in the vicinity of its nuclear localization signal; however, the effect of this phosphorylation is not yet known. To investigate this issue, an integrated set of structural, molecular and cell biological methods were employed. It is shown that NLS-adjacent phosphorylation of dUTPase occurs during the M phase of the cell cycle. Comparison of the cellular distribution of wild-type dUTPase with those of hyperphosphorylation- and hypophosphorylation-mimicking mutants suggests that phosphorylation at Ser11 leads to the exclusion of dUTPase from the nucleus. Isothermal titration microcalorimetry and additional independent biophysical techniques show that the interaction between dUTPase and importin-α, the karyopherin molecule responsible for `classical' NLS binding, is weakened significantly in the case of the S11E hyperphosphorylation-mimicking mutant. The structures of the importin-α-wild-type and the importin-α-hyperphosphorylation-mimicking dUTPase NLS complexes provide structural insights into the molecular details of this regulation. The data indicate that the post-translational modification of dUTPase during the cell cycle may modulate the nuclear availability of this enzyme.


Assuntos
Pirofosfatases/metabolismo , alfa Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Ciclo Celular , Cristalografia por Raios X , Células HEK293 , Humanos , Modelos Moleculares , Sinais de Localização Nuclear , Fosforilação , Pirofosfatases/química , alfa Carioferinas/química
8.
Sci Adv ; 9(16): eadg6618, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37075114

RESUMO

The blood-brain barrier (BBB) presents a major challenge for delivering large molecules to study and treat the central nervous system. This is due in part to the scarcity of targets known to mediate BBB crossing. To identify novel targets, we leverage a panel of adeno-associated viruses (AAVs) previously identified through mechanism-agnostic directed evolution for improved BBB transcytosis. Screening potential cognate receptors for enhanced BBB crossing, we identify two targets: murine-restricted LY6C1 and widely conserved carbonic anhydrase IV (CA-IV). We apply AlphaFold-based in silico methods to generate capsid-receptor binding models to predict the affinity of AAVs for these identified receptors. Demonstrating how these tools can unlock target-focused engineering strategies, we create an enhanced LY6C1-binding vector, AAV-PHP.eC, that, unlike our prior PHP.eB, also works in Ly6a-deficient mouse strains such as BALB/cJ. Combined with structural insights from computational modeling, the identification of primate-conserved CA-IV enables the design of more specific and potent human brain-penetrant chemicals and biologicals, including gene delivery vectors.


Assuntos
Barreira Hematoencefálica , Anidrase Carbônica IV , Camundongos , Humanos , Animais , Barreira Hematoencefálica/metabolismo , Anidrase Carbônica IV/genética , Anidrase Carbônica IV/metabolismo , Encéfalo/metabolismo , Técnicas de Transferência de Genes , Primatas/genética , Dependovirus/genética , Dependovirus/metabolismo
9.
bioRxiv ; 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38187707

RESUMO

Integrating cell type-specific regulatory elements (e.g. enhancers) with recombinant adeno-associated viruses (AAVs) can provide broad and efficient genetic access to specific cell types. However, the packaging capacity of AAVs restricts the size of both the enhancers and the cargo that can be delivered. Transcriptional crosstalk offers a novel paradigm for cell type-specific expression of large cargo, by separating distally-acting regulatory elements into a second AAV genome. Here, we identify and profile transcriptional crosstalk in AAV genomes carrying 11 different enhancers active in mouse brain. To understand transcriptional crosstalk, we develop spatial genomics methods to identify and localize AAV genomes and their concatemeric forms in cultured cells and in tissue. Using these methods, we construct detailed views of the dynamics of AAV transduction and demonstrate that transcriptional crosstalk is dependent upon concatemer formation. Finally, we leverage transcriptional crosstalk to drive expression of a large Cas9 cargo in a cell type-specific manner with systemically-administered engineered AAVs and demonstrate AAV-delivered, minimally-invasive, cell type-specific gene editing in wildtype animals that recapitulates known disease phenotypes.

10.
Elife ; 102021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34569938

RESUMO

Apico-basal polarization of cells within the embryo is critical for the segregation of distinct lineages during mammalian development. Polarized cells become the trophectoderm (TE), which forms the placenta, and apolar cells become the inner cell mass (ICM), the founding population of the fetus. The cellular and molecular mechanisms leading to polarization of the human embryo and its timing during embryogenesis have remained unknown. Here, we show that human embryo polarization occurs in two steps: it begins with the apical enrichment of F-actin and is followed by the apical accumulation of the PAR complex. This two-step polarization process leads to the formation of an apical domain at the 8-16 cell stage. Using RNA interference, we show that apical domain formation requires Phospholipase C (PLC) signaling, specifically the enzymes PLCB1 and PLCE1, from the eight-cell stage onwards. Finally, we show that although expression of the critical TE differentiation marker GATA3 can be initiated independently of embryo polarization, downregulation of PLCB1 and PLCE1 decreases GATA3 expression through a reduction in the number of polarized cells. Therefore, apical domain formation reinforces a TE fate. The results we present here demonstrate how polarization is triggered to regulate the first lineage segregation in human embryos.


Assuntos
Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Polaridade Celular , Embrião de Mamíferos/enzimologia , Actinas/metabolismo , Adulto , Técnicas de Cultura Embrionária , Feminino , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Humanos , Fosfoinositídeo Fosfolipase C , Fosfolipase C beta , Gravidez , Transdução de Sinais , Fatores de Tempo , Adulto Jovem
11.
Nat Commun ; 10(1): 3858, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451685

RESUMO

The Polycomb group of proteins is required for the proper orchestration of gene expression due to its role in maintaining transcriptional silencing. It is composed of several chromatin modifying complexes, including Polycomb Repressive Complex 2 (PRC2), which deposits H3K27me2/3. Here, we report the identification of a cofactor of PRC2, EZHIP (EZH1/2 Inhibitory Protein), expressed predominantly in the gonads. EZHIP limits the enzymatic activity of PRC2 and lessens the interaction between the core complex and its accessory subunits, but does not interfere with PRC2 recruitment to chromatin. Deletion of Ezhip in mice leads to a global increase in H3K27me2/3 deposition both during spermatogenesis and at late stages of oocyte maturation. This does not affect the initial number of follicles but is associated with a reduction of follicles in aging. Our results suggest that mature oocytes Ezhip-/- might not be fully functional and indicate that fertility is strongly impaired in Ezhip-/- females. Altogether, our study uncovers EZHIP as a regulator of chromatin landscape in gametes.


Assuntos
Proteínas Oncogênicas/metabolismo , Óvulo/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Espermatozoides/metabolismo , Adulto , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Feminino , Células HEK293 , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/isolamento & purificação , Oogênese , Ovário/citologia , Ovário/patologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Sf9 , Espermatogênese , Testículo/citologia , Testículo/patologia
12.
Nat Genet ; 49(1): 110-118, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27841881

RESUMO

The potential for early embryonic events to program epigenetic states that influence adult physiology remains an important question in health and development. Using the imprinted Zdbf2 locus as a paradigm for the early programming of phenotypes, we demonstrate here that chromatin changes that occur in the pluripotent embryo can be dispensable for embryogenesis but instead signal essential regulatory information in the adult. The Liz (long isoform of Zdbf2) transcript is transiently expressed in early embryos and embryonic stem cells (ESCs). This transcription locally promotes de novo DNA methylation upstream of the Zdbf2 promoter, which antagonizes Polycomb-mediated repression of Zdbf2. Strikingly, mouse embryos deficient for Liz develop normally but fail to activate Zdbf2 in the postnatal brain and show indelible growth reduction, implying a crucial role for a Liz-dependent epigenetic switch. This work provides evidence that transcription during an early embryonic timeframe can program a stable epigenetic state with later physiological consequences.


Assuntos
Metilação de DNA , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Epigenômica , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Receptores Acoplados a Proteínas G/fisiologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Cromatina/genética , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias/metabolismo , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética
13.
Curr Biol ; 26(5): 678-85, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26898469

RESUMO

Sister chromatid cohesion mediated by the cohesin complex is essential for chromosome segregation in mitosis and meiosis [1]. Rec8-containing cohesin, bound to Smc3/Smc1α or Smc3/Smc1ß, maintains bivalent cohesion in mammalian meiosis [2-6]. In females, meiotic DNA replication and recombination occur in fetal oocytes. After birth, oocytes arrest at the prolonged dictyate stage until recruited to grow into mature oocytes that divide at ovulation. How cohesion is maintained in arrested oocytes remains a pivotal question relevant to maternal age-related aneuploidy. Hypothetically, cohesin turnover regenerates cohesion in oocytes. Evidence for post-replicative cohesion establishment mechanism exists, in yeast and invertebrates [7, 8]. In mouse fetal oocytes, cohesin loading factor Nipbl/Scc2 localizes to chromosome axes during recombination [9, 10]. Alternatively, cohesion is maintained without turnover. Consistent with this, cohesion maintenance does not require Smc1ß transcription, but unlike Rec8, Smc1ß is not required for establishing bivalent cohesion [11, 12]. Rec8 maintains cohesion without turnover during weeks of oocyte growth [3]. Whether the same applies to months or decades of arrest is unknown. Here, we test whether Rec8 activated in arrested mouse oocytes builds cohesion revealed by TEV cleavage and live-cell imaging. Rec8 establishes cohesion when activated during DNA replication in fetal oocytes using tamoxifen-inducible Cre. In contrast, no new cohesion is detected when Rec8 is activated in arrested oocytes by tamoxifen despite cohesin synthesis. We conclude that cohesion established in fetal oocytes is maintained for months without detectable turnover in dictyate-arrested oocytes. This implies that women's fertility depends on the longevity of cohesin proteins that established cohesion in utero.


Assuntos
Segregação de Cromossomos , Proteínas Nucleares/genética , Oócitos/metabolismo , Fosfoproteínas/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Camundongos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Coesinas
14.
FEBS J ; 281(24): 5463-78, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25283549

RESUMO

Nucleocytoplasmic trafficking of large macromolecules requires an active transport machinery. In many cases, this is initiated by binding of the nuclear localization signal (NLS) peptide of cargo proteins to importin-α molecules. Fine orchestration of nucleocytoplasmic trafficking is of particularly high importance for proteins involved in maintenance of genome integrity, such as dUTPases, which are responsible for prevention of uracil incorporation into the genome. In most eukaryotes, dUTPases have two homotrimeric isoforms: one of these contains three NLSs and is present in the cell nucleus, while the other is located in the cytoplasm or the mitochondria. Here we focus on the unusual occurrence of a pseudo-heterotrimeric dUTPase in Drosophila virilis that contains one NLS, and investigate its localization pattern compared to the homotrimeric dUTPase isoforms of Drosophila melanogaster. Although the interaction of individual NLSs with importin-α has been well characterized, the question of how multiple NLSs of oligomeric cargo proteins affect their trafficking has been less frequently addressed in adequate detail. Using the D. virilis dUTPase as a fully relevant physiologically occurring model protein, we show that NLS copy number influences the efficiency of nuclear import in both insect and mammalian cell lines, as well as in D. melanogaster and D. virilis tissues. Biophysical data indicate that NLS copy number determines the stoichiometry of complexation between importin-α and dUTPases. The main conclusion of our study is that, in D. virilis, a single dUTPase isoform efficiently reproduces the cellular dUTPase distribution pattern that requires two isoforms in D. melanogaster.


Assuntos
Núcleo Celular/metabolismo , Variações do Número de Cópias de DNA , Sinais de Localização Nuclear/genética , Animais , Biopolímeros/metabolismo , Drosophila , Transporte Proteico
15.
Cell Cycle ; 13(22): 3551-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483092

RESUMO

Phosphorylation by the cyclin-dependent kinase 1 (Cdk1) adjacent to nuclear localization signals (NLSs) is an important mechanism of regulation of nucleocytoplasmic transport. However, no systematic survey has yet been performed in human cells to analyze this regulatory process, and the corresponding cell-cycle dynamics have not yet been investigated. Here, we focused on the human proteome and found that numerous proteins, previously not identified in this context, are associated with Cdk1-dependent phosphorylation sites adjacent to their NLSs. Interestingly, these proteins are involved in key regulatory events of DNA repair, epigenetics, or RNA editing and splicing. This finding indicates that cell-cycle dependent events of genome editing and gene expression profiling may be controlled by nucleocytoplasmic trafficking. For in-depth investigations, we selected a number of these proteins and analyzed how point mutations, expected to modify the phosphorylation ability of the NLS segments, perturb nucleocytoplasmic localization. In each case, we found that mutations mimicking hyper-phosphorylation abolish nuclear import processes. To understand the mechanism underlying these phenomena, we performed a video microscopy-based kinetic analysis to obtain information on cell-cycle dynamics on a model protein, dUTPase. We show that the NLS-adjacent phosphorylation by Cdk1 of human dUTPase, an enzyme essential for genomic integrity, results in dynamic cell cycle-dependent distribution of the protein. Non-phosphorylatable mutants have drastically altered protein re-import characteristics into the nucleus during the G1 phase. Our results suggest a dynamic Cdk1-driven mechanism of regulation of the nuclear proteome composition during the cell cycle.


Assuntos
Quinases Ciclina-Dependentes/genética , Reparo do DNA/genética , Sinais de Localização Nuclear/genética , Proteoma , Sequência de Aminoácidos , Proteína Quinase CDC2 , Ciclo Celular/genética , Divisão Celular , Quinases Ciclina-Dependentes/metabolismo , Humanos , Fosforilação
16.
Curr Biol ; 23(24): 2534-9, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24291092

RESUMO

Since the dissolution of sister chromatid cohesion by separase and cyclin B destruction is irreversible, it is essential to delay both until all chromosomes have bioriented on the mitotic spindle. Kinetochores that are not correctly attached to the spindle generate the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex/cyclosome (APC/C) and blocks anaphase onset. This process is known as the spindle assembly checkpoint (SAC). The SAC is especially important in meiosis I, where bivalents consisting of homologous chromosomes held together by chiasmata biorient. Since the first meiotic division is unaffected by rare achiasmatic chromosomes or misaligned bivalents, it is thought that several tensionless kinetochores are required to produce sufficient MCC for APC/C inhibition. Consistent with this, univalents lacking chiasmata elicit a SAC-mediated arrest in Mlh1(-/-) oocytes. In contrast, chromatids generated by TEV protease-induced cohesin cleavage in Rec8(TEV/TEV) oocytes merely delay APC/C activation. Since the arrest of Mlh1(-/-)Rec8(TEV/TEV) oocytes is alleviated by TEV protease, even when targeted to kinetochores, we conclude that their SAC depends on cohesin as well as dedicated kinetochore proteins. This has important implications for aging oocytes, where cohesin deterioration will induce sister kinetochore biorientation and compromise MCC production, leading to chromosome missegregation and aneuploid fetuses.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Cinetocoros/ultraestrutura , Pontos de Checagem da Fase M do Ciclo Celular , Meiose , Oócitos/citologia , Animais , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Cinetocoros/fisiologia , Camundongos , Imagem com Lapso de Tempo , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA