Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 52(6): 890-892, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32553174

RESUMO

Caspase-8 is a master regulator of cell death pathways, although its regulation during inflammation remains elusive. Using elegant mouse genetic approaches, Schwarzer et al. and Tummers et al. revealed the importance of FADD in regulating caspase-8-mediated inflammatory responses and gut homeostasis.


Assuntos
Microbioma Gastrointestinal , Animais , Apoptose , Caspase 8/genética , Caspase 8/metabolismo , Morte Celular , Células Epiteliais/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Homeostase , Inflamação , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteínas de Ligação a Fosfato , Proteínas Quinases
2.
Antimicrob Agents Chemother ; 66(11): e0028422, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314800

RESUMO

Drug combinations and drug repurposing have emerged as promising strategies to develop novel treatments for infectious diseases, including Chagas disease. In this study, we aimed to investigate whether the repurposed drugs chloroquine (CQ) and colchicine (COL), known to inhibit Trypanosoma cruzi infection in host cells, could boost the anti-T. cruzi effect of the trypanocidal drug benznidazole (BZN), increasing its therapeutic efficacy while reducing the dose needed to eradicate the parasite. The combination of BZN and COL exhibited cytotoxicity to infected cells and low antiparasitic activity. Conversely, a combination of BZN and CQ significantly reduced T. cruzi infection in vitro, with no apparent cytotoxicity. This effect seemed to be consistent across different cell lines and against both the partially BZN-resistant Y and the highly BZN-resistant Colombiana strains. In vivo experiments in an acute murine model showed that the BZN+CQ combination was eight times more effective in reducing T. cruzi infection in the acute phase than BZN monotherapy. In summary, our results demonstrate that the concomitant administration of CQ and BZN potentiates the trypanocidal activity of BZN, leading to a reduction in the dose needed to achieve an effective response. In a translational context, it could represent a higher efficacy of treatment while also mitigating the adverse effects of high doses of BZN. Our study also reinforces the relevance of drug combination and repurposing approaches in the field of Chagas disease drug discovery.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Camundongos , Animais , Reposicionamento de Medicamentos , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
3.
Clin Sci (Lond) ; 135(5): 687-701, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33620070

RESUMO

Muscle tissue damage is one of the local effects described in bothropic envenomations. Bothropstoxin-I (BthTX-I), from Bothrops jararacussu venom, is a K49-phospholipase A2 (PLA2) that induces a massive muscle tissue injury, and, consequently, local inflammatory reaction. The NLRP3 inflammasome is a sensor that triggers inflammation by activating caspase 1 and releasing interleukin (IL)-1ß and/or inducing pyroptotic cell death in response to tissue damage. We, therefore, aimed to address activation of NLRP3 inflammasome by BthTX-I-associated injury and the mechanism involved in this process. Intramuscular injection of BthTX-I results in infiltration of neutrophils and macrophages in gastrocnemius muscle, which is reduced in NLRP3- and Caspase-1-deficient mice. The in vitro IL-1ß production induced by BthTX-I in peritoneal macrophages (PMs) requires caspase 1/11, ASC and NLRP3 and is dependent on adenosine 5'-triphosphate (ATP)-induced K+ efflux and P2X7 receptor (P2X7R). BthTX-I induces a dramatic release of ATP from C2C12 myotubes, therefore representing the major mechanism for P2X7R-dependent inflammasome activation in macrophages. A similar result was obtained when human monocyte-derived macrophages (HMDMs) were treated with BthTX-I. These findings demonstrated the inflammatory effect of BthTX-I on muscle tissue, pointing out a role for the ATP released by damaged cells for the NLRP3 activation on macrophages, contributing to the understanding of the microenvironment of the tissue damage of the Bothrops envenomation.


Assuntos
Venenos de Crotalídeos/toxicidade , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Trifosfato de Adenosina , Animais , Bothrops , Caspase 1/deficiência , Linhagem Celular , Humanos , Macrófagos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/patologia , Doenças Musculares/induzido quimicamente , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Receptores Purinérgicos P2X7
4.
PLoS Pathog ; 12(6): e1005698, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27332899

RESUMO

Although CD4+ Foxp3+ T cells are largely described in the regulation of CD4+ T cell responses, their role in the suppression of CD8+ T cell priming is much less clear. Because the induction of CD8+ T cells during experimental infection with Trypanosoma cruzi is remarkably delayed and suboptimal, we raised the hypothesis that this protozoan parasite actively induces the regulation of CD8+ T cell priming. Using an in vivo assay that eliminated multiple variables associated with antigen processing and dendritic cell activation, we found that injection of bone marrow-derived dendritic cells exposed to T. cruzi induced regulatory CD4+ Foxp3+ T cells that suppressed the priming of transgenic CD8+ T cells by peptide-loaded BMDC. This newly described suppressive effect on CD8+ T cell priming was independent of IL-10, but partially dependent on CTLA-4 and TGF-ß. Accordingly, depletion of Foxp3+ cells in mice infected with T. cruzi enhanced the response of epitope-specific CD8+ T cells. Altogether, our data uncover a mechanism by which T. cruzi suppresses CD8+ T cell responses, an event related to the establishment of chronic infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Células Dendríticas/imunologia , Evasão da Resposta Imune/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Citometria de Fluxo , Humanos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Trypanosoma cruzi/imunologia
6.
PLoS Pathog ; 10(7): e1004188, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24991816

RESUMO

The purinergic P2X7 receptor (P2X7R) is a sensor of extracellular ATP, a damage-associated molecule that is released from necrotic cells and that induces pro-inflammatory cytokine production and cell death. To investigate whether the innate immune response to damage signals could contribute to the development of pulmonary necrotic lesions in severe forms of tuberculosis, disease progression was examined in C57BL/6 and P2X7R-/- mice that were intratracheally infected with highly virulent mycobacterial strains (Mycobacterium tuberculosis strain 1471 of the Beijing genotype family and Mycobacterium bovis strain MP287/03). The low-dose infection of C57BL/6 mice with bacteria of these strains caused the rapid development of extensive granulomatous pneumonia with necrotic areas, intense bacillus dissemination and anticipated animal death. In contrast, in P2X7R-/- mice, the lung pathology presented with moderate infiltrates of mononuclear leukocytes without visible signs of necrosis; the disease attenuation was accompanied by a delay in mortality. In vitro, the hypervirulent mycobacteria grew rapidly inside macrophages and induced death by a P2X7R-dependent mechanism that facilitated the release of bacilli. Furthermore, these bacteria were resistant to the protective mechanisms elicited in macrophages following extracellular ATP stimulation. Based on this study, we propose that the rapid intracellular growth of hypervirulent mycobacteria results in massive macrophage damage. The ATP released by damaged cells engages P2X7R and accelerates the necrotic death of infected macrophages and the release of bacilli. This vicious cycle exacerbates pneumonia and lung necrosis by promoting widespread cell destruction and bacillus dissemination. These findings suggest the use of drugs that have been designed to inhibit the P2X7R as a new therapeutic approach to treat the aggressive forms of tuberculosis.


Assuntos
Macrófagos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Receptores Purinérgicos P2X7 , Tuberculose Pulmonar , Trifosfato de Adenosina/imunologia , Animais , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Mycobacterium bovis/imunologia , Mycobacterium bovis/patogenicidade , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/imunologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia
7.
Proc Natl Acad Sci U S A ; 110(35): E3321-30, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23942123

RESUMO

NAIP5/NLRC4 (neuronal apoptosis inhibitory protein 5/nucleotide oligomerization domain-like receptor family, caspase activation recruitment domain domain-containing 4) inflammasome activation by cytosolic flagellin results in caspase-1-mediated processing and secretion of IL-1ß/IL-18 and pyroptosis, an inflammatory cell death pathway. Here, we found that although NLRC4, ASC, and caspase-1 are required for IL-1ß secretion in response to cytosolic flagellin, cell death, nevertheless, occurs in the absence of these molecules. Cytosolic flagellin-induced inflammasome-independent cell death is accompanied by IL-1α secretion and is temporally correlated with the restriction of Salmonella Typhimurium infection. Despite displaying some apoptotic features, this peculiar form of cell death do not require caspase activation but is regulated by a lysosomal pathway, in which cathepsin B and cathepsin D play redundant roles. Moreover, cathepsin B contributes to NAIP5/NLRC4 inflammasome-induced pyroptosis and IL-1α and IL-1ß production in response to cytosolic flagellin. Together, our data describe a pathway induced by cytosolic flagellin that induces a peculiar form of cell death and regulates inflammasome-mediated effector mechanisms of macrophages.


Assuntos
Citosol/metabolismo , Flagelina/metabolismo , Inflamassomos/metabolismo , Lisossomos/metabolismo , Macrófagos/imunologia , Animais , Apoptose , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Receptor 5 Toll-Like/genética
8.
J Immunol ; 190(7): 3629-38, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23460746

RESUMO

Pathogens are detected by innate immune receptors that, upon activation, orchestrate an appropriate immune response. Recent studies revealed the intracellular signaling cascades involved in the TLR-initiated immune response to Brucella abortus infection. However, no report has elucidated the role of inflammasome receptors in Brucella recognition. Therefore, we decided to investigate the function of NLRC4, NLRP3, and AIM2 in sensing Brucella. In this study, we showed that NLRC4 is not required to induce caspase-1 activation and further secretion of IL-1ß by B. abortus in macrophages. In contrast, we determined that AIM2, which senses Brucella DNA, and NLRP3 are partially required for caspase-1 activation and IL-1ß secretion. Additionally, mitochondrial reactive oxygen species induced by Brucella were implicated in IL-1ß production. Furthermore, AIM2, NLRP3, ASC, and caspase-1 knockout mice were more susceptible to B. abortus infection than were wild-type animals, suggesting that multiple ASC-dependent inflammasomes contribute to host protection against infection. This protective effect is due to the inflammatory response caused by IL-1ß and IL-18 rather than pyroptosis, because we observed augmented bacterial burden in IL-1R and IL-18 knockout mice. Finally, we determined that bacterial type IV secretion system VirB and live, but not heat-killed, Brucella are required for full inflammasome activation in macrophages during infection. Taken together, our results indicate that Brucella is sensed by ASC inflammasomes that collectively orchestrate a robust caspase-1 activation and proinflammatory response.


Assuntos
Sistemas de Secreção Bacterianos , Brucella abortus/imunologia , Brucella abortus/metabolismo , Brucelose/imunologia , Brucelose/metabolismo , Caspase 1/metabolismo , Proteínas do Citoesqueleto/metabolismo , Inflamassomos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspase 1/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA , Ativação Enzimática , Predisposição Genética para Doença , Granuloma/imunologia , Granuloma/metabolismo , Granuloma/microbiologia , Imunidade Inata , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Fígado/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo
9.
PLoS Pathog ; 8(5): e1002699, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615561

RESUMO

MHC class Ia-restricted CD8(+) T cells are important mediators of the adaptive immune response against infections caused by intracellular microorganisms. Whereas antigen-specific effector CD8(+) T cells can clear infection caused by intracellular pathogens, in some circumstances, the immune response is suboptimal and the microorganisms survive, causing host death or chronic infection. Here, we explored the cellular and molecular mechanisms that could explain why CD8(+) T cell-mediated immunity during infection with the human protozoan parasite Trypanosoma cruzi is not optimal. For that purpose, we compared the CD8(+) T-cell mediated immune responses in mice infected with T. cruzi or vaccinated with a recombinant adenovirus expressing an immunodominant parasite antigen. Several functional and phenotypic characteristics of specific CD8(+) T cells overlapped. Among few exceptions was an accelerated expansion of the immune response in adenoviral vaccinated mice when compared to infected ones. Also, there was an upregulated expression of the apoptotic-signaling receptor CD95 on the surface of specific T cells from infected mice, which was not observed in the case of adenoviral-vaccinated mice. Most importantly, adenoviral vaccine provided at the time of infection significantly reduced the upregulation of CD95 expression and the proapoptotic phenotype of pathogen-specific CD8(+) cells expanded during infection. In parallel, infected adenovirus-vaccinated mice had a stronger CD8 T-cell mediated immune response and survived an otherwise lethal infection. We concluded that a suboptimal CD8(+) T-cell response is associated with an upregulation of CD95 expression and a proapoptotic phenotype. Both can be blocked by adenoviral vaccination.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neuraminidase/imunologia , Vacinas Protozoárias/imunologia , Trypanosoma cruzi/imunologia , Receptor fas/biossíntese , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Anticorpos Antiprotozoários/biossíntese , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Apoptose , Doença de Chagas/imunologia , Doença de Chagas/prevenção & controle , Interferon gama/biossíntese , Proteína 1 de Membrana Associada ao Lisossomo/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Trypanosoma cruzi/patogenicidade , Vacinas Sintéticas/imunologia
10.
Methods ; 61(2): 110-6, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23454287

RESUMO

Pyroptosis is a molecularly controlled form of cell death that exhibits some features of apoptosis as well of necrosis. Pyroptosis is induced by inflammasome-activated caspase-1 or caspase-11 (caspase-4 in humans), as a result of distinct pathogenic or damage stimuli. Although pyroptosis displays some morphological and biochemical features of apoptosis, it has an inflammatory outcome due to the loss of plasma membrane integrity and the consequent release of intracellular contents, reminiscent to necrosis. Here, we use cytosolic delivery of purified flagellin as an experimental tool to trigger pyroptosis and describe potential methods to study this form of cell death. Finally, we discuss the advantages and limitations of these methods.


Assuntos
Apoptose/genética , Citosol/metabolismo , Flagelina/metabolismo , Inflamassomos/metabolismo , Macrófagos Peritoneais/metabolismo , Animais , Bacillus subtilis/química , Caspase 1/deficiência , Caspase 1/genética , Citosol/ultraestrutura , Ativação Enzimática , Ácidos Graxos Monoinsaturados/química , Flagelina/farmacologia , Humanos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose/genética , Necrose/patologia , Transporte Proteico , Compostos de Amônio Quaternário/química , Transdução de Sinais
11.
Mediators Inflamm ; 2014: 912965, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25104883

RESUMO

Over the past 20 years, the immune effector mechanisms involved in the control of Trypanosoma cruzi, as well as the receptors participating in parasite recognition by cells of the innate immune system, have been largely described. However, the main questions on the physiopathology of Chagas disease remain unanswered: "Why does the host immune system fail to provide sterile immunity?" and "Why do only a proportion of infected individuals develop chronic pathology?" In this review, we describe the mechanisms proposed to explain the inability of the immune system to eradicate the parasite and the elements that allow the development of chronic heart disease. Moreover, we discuss the possibility that the inability of infected cardiomyocytes to sense intracellular T. cruzi contributes to parasite persistence in the heart and the development of chronic pathology.


Assuntos
Doença de Chagas/imunologia , Animais , Doença de Chagas/complicações , Cardiopatias/etiologia , Cardiopatias/imunologia , Cardiopatias/parasitologia , Humanos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/parasitologia , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/patogenicidade
12.
Inflammation ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329636

RESUMO

Neutrophilic asthma is generally defined by poorly controlled symptoms and high levels of neutrophils in the lungs. Short-chain fatty acids (SCFAs) are proposed as nonpharmacological therapy for allergic asthma, but their impact on the neutrophilic asthma lacks evidence. SCFAs regulate immune cell responses and impact the inflammasome NLRP3, a potential pharmacological target for neutrophilic asthma. Here, we explored the capacity of SCFAs to mitigate murine-induced neutrophilic asthma and the contribution of NLRP3 to this asthma. The objective of this study is to analyze whether SCFAs can attenuate lung inflammation and tissue remodeling in murine neutrophilic asthma and NLRP3 contribution to this endotype. Wild-type (WT) C57BL6 mice orotracheally received 10 µg of HDM (house dust mite) in 80 µL of saline on days 0, 6-10. To explore SCFAs, each HDM group received 200 mM acetate, propionate, or butyrate. To explore NLRP3, Nlrp3 KO mice received the same protocol of HDM. On the 14th day, after euthanasia, bronchoalveolar lavage fluid (BALF) and lungs were collected to evaluate cellularity, inflammatory cytokines, and tissue remodeling. HDM group had increased BALF neutrophil influx, TNF-α, IFN-γ, IL-17A, collagen deposition, and mucus secretion compared to control. SCFAs distinctively attenuate lung inflammation. Only features of tissue remodeling were Nlrp3-dependent such as collagen deposition, mucus secretion, active TGF-ß cytokine, and IMs CD206+. SCFAs greatly decreased inflammatory cytokines and tissue remodeling. Only tissue remodeling was dependent on NLRP3. It reveals the potential of SCFAs to act as an additional therapy to mitigate neutrophilic asthma and the NLRP3 contribution to asthma.

13.
Proc Natl Acad Sci U S A ; 107(6): 2568-73, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20133793

RESUMO

The peritoneal cavity (PerC) is a unique compartment within which a variety of immune cells reside, and from which macrophages (MØ) are commonly drawn for functional studies. Here we define two MØ subsets that coexist in PerC in adult mice. One, provisionally called the large peritoneal MØ (LPM), contains approximately 90% of the PerC MØ in unstimulated animals but disappears rapidly from PerC following lipopolysaccharide (LPS) or thioglycolate stimulation. These cells express high levels of the canonical MØ surface markers, CD11b and F4/80. The second subset, referred to as small peritoneal MØ (SPM), expresses substantially lower levels of CD11b and F4/80 but expresses high levels of MHC-II, which is not expressed on LPM. SPM, which predominates in PerC after LPS or thioglycolate stimulation, does not derive from LPM. Instead, it derives from blood monocytes that rapidly enter the PerC after stimulation and differentiate to mature SPM within 2 to 4 d. Both subsets show clear phagocytic activity and both produce nitric oxide (NO) in response to LPS stimulation in vivo. However, their responses to LPS show key differences: in vitro, LPS stimulates LPM, but not SPM, to produce NO; in vivo, LPS stimulates both subsets to produce NO, albeit with different response patterns. These findings extend current models of MØ heterogeneity and shed new light on PerC MØ diversity, development, and function. Thus, they introduce a new context for interpreting (and reinterpreting) data from ex vivo studies with PerC MØ.


Assuntos
Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/imunologia , Cavidade Peritoneal/citologia , Animais , Antígenos de Diferenciação/metabolismo , Antígeno CD11b/metabolismo , Células Cultivadas , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Microscopia Confocal , Fagocitose/imunologia , Tioglicolatos/farmacologia
14.
Front Immunol ; 14: 1282856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38124741

RESUMO

Inflammasomes are large protein complexes that, once activated, initiate inflammatory responses by activating the caspase-1 protease. They play pivotal roles in host defense against pathogens. The well-established role of NAIP/NLRC4 inflammasome in bacterial infections involves NAIP proteins functioning as sensors for their ligands. However, recent reports have indicated the involvement of NLRC4 in non-bacterial infections and sterile inflammation, even though the role of NAIP proteins and the exact molecular mechanisms underlying inflammasome activation in these contexts remain to be elucidated. In this study, we investigated the activation of the NAIP/NLRC4 inflammasome in response to Trypanosoma cruzi, the protozoan parasite responsible for causing Chagas disease. This parasite has been previously demonstrated to activate NLRP3 inflammasomes. Here we found that NAIP and NLRC4 proteins are also required for IL-1ß and Nitric Oxide (NO) release in response to T. cruzi infection, with their absence rendering macrophages permissive to parasite replication. Moreover, Nlrc4 -/- and Nlrp3 -/- macrophages presented similar impaired responses to T. cruzi, underscoring the non-redundant roles played by these inflammasomes during infection. Notably, it was the live trypomastigotes rather than soluble antigens or extracellular vesicles (EVs) secreted by them, that activated inflammasomes in a cathepsins-dependent manner. The inhibition of cathepsins effectively abrogated caspase-1 cleavage, IL-1ß and NO release, mirroring the phenotype observed in Nlrc4 -/-/Nlrp3 -/- double knockout macrophages. Collectively, our findings shed light on the pivotal role of the NAIP/NLRC4 inflammasome in macrophage responses to T. cruzi infection, providing new insights into its broader functions that extend beyond bacterial infections.


Assuntos
Infecções Bacterianas , Doença de Chagas , Trypanosoma cruzi , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Trypanosoma cruzi/metabolismo , Caspase 1/metabolismo , Catepsinas/metabolismo , Macrófagos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteína Inibidora de Apoptose Neuronal/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-37368949

RESUMO

INTRODUCTION: There has been growing concern about the long-term effects of COVID-19 on mental health. The biological factors common to psychiatric conditions and COVID-19 are not yet fully understood. METHODOLOGY: We narratively reviewed prospective longitudinal studies that measured metabolic or inflammatory markers and assessed psychiatric sequalae and cognitive impairment in individuals with COVID-19 at least 3 months after the infection. A literature search identified three relevant cohort studies. RESULTS: Overall, depressive symptomatology and cognitive deficits persisted for up to one year after COVID-19; depression and cognitive changes were predicted by acute inflammatory markers, and changes in these markers correlated with changes in depressive symptomatology; female sex, obesity, and the presence of inflammatory markers were associated with more severe clusters of physical and mental health status in patients' self-perceived recovery; and plasma metabolic profiles of patients continued to differ from those of healthy controls three months after hospital discharge, which were associated with widespread alterations in neuroimaging, reflecting issues with white matter integrity. This is a non-systematic review and cautions should be made while interpreting the conclusions. CONCLUSION: In individuals affected by the COVID-19, prolonged exposure to stress and alterations in metabolic and inflammatory markers plays a central role in psychiatric sequalae and cognitive deficits in the long term.

16.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38139812

RESUMO

Anaplastic thyroid cancer (ATC) is an aggressive form of thyroid cancer (TC), accounting for 50% of total TC-related deaths. Although therapeutic approaches against TC have improved in recent years, the survival rate remains low, and severe adverse effects are commonly reported. However, unexplored alternatives based on natural compounds, such as lysicamine, an alkaloid found in plants with established cytotoxicity against breast and liver cancers, offer promise. Therefore, this study aimed to explore the antineoplastic effects of lysicamine in papillary TC (BCPAP) and ATC (HTH83 and KTC-2) cells. Lysicamine treatment reduced cell viability, motility, colony formation, and AKT activation while increasing the percentage of necrotic cells. The absence of caspase activity confirmed apoptosis-independent cell death. Necrostatin-1 (NEC-1)-mediated necrosome inhibition reduced lysicamine-induced necrosis in KTC-2, suggesting necroptosis induction via a reactive oxygen species (ROS)-independent mechanism. Additionally, in silico analysis predicted lysicamine target proteins, particularly those related to MAPK and TGF-ß signaling. Our study demonstrated lysicamine's potential as an antineoplastic compound in ATC cells with a proposed mechanism related to inhibiting AKT activation and inducing cell death.

17.
Clin Dev Immunol ; 2012: 721817, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22162718

RESUMO

Foxp3(+)CD25(+)CD4(+) regulatory T cells are vital for peripheral tolerance and control of tissue inflammation. In this study, we characterized the phenotype and monitored the migration and activity of regulatory T cells present in the airways of allergic or tolerant mice after allergen challenge. To induce lung allergic inflammation, mice were sensitized twice with ovalbumin/aluminum hydroxide gel and challenged twice with intranasal ovalbumin. Tolerance was induced by oral administration of ovalbumin for 5 consecutive days prior to OVA sensitization and challenge. We detected regulatory T cells (Foxp3(+)CD25(+)CD4(+) T cells) in the airways of allergic and tolerant mice; however, the number of regulatory T cells was more than 40-fold higher in allergic mice than in tolerant mice. Lung regulatory T cells expressed an effector/memory phenotype (CCR4(high)CD62L(low)CD44(high)CD54(high)CD69(+)) that distinguished them from naive regulatory T cells (CCR4(int)CD62L(high)CD44(int)CD54(int)CD69(-)). These regulatory T cells efficiently suppressed pulmonary T-cell proliferation but not Th2 cytokine production.


Assuntos
Asma/imunologia , Proliferação de Células , Citocinas/biossíntese , Pulmão/imunologia , Pneumonia/imunologia , Linfócitos T Reguladores/imunologia , Animais , Asma/patologia , Antígenos CD4/metabolismo , Feminino , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/patologia , Células Th2/imunologia , Células Th2/metabolismo
18.
Cell Death Dis ; 13(12): 1029, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481780

RESUMO

The NAIP/NLRC4 inflammasome is classically associated with the detection of bacterial invasion to the cytosol. However, recent studies have demonstrated that NAIP/NLRC4 is also activated in non-bacterial infections, and in sterile inflammation. Moreover, in addition to the well-established model for the detection of bacterial proteins by NAIP proteins, the participation of other cytosolic pathways in the regulation of NAIP/NLRC4-mediated responses has been reported in distinct contexts. Using pharmacological inhibition and genetic deletion, we demonstrate here that cathepsins, well known for their involvement in NLRP3 activation, also regulate NAIP/NLRC4 responses to cytosolic flagellin in murine and human macrophages. In contrast to that observed for NLRP3 agonists, cathepsins inhibition did not reduce ASC speck formation or caspase-1 maturation in response to flagellin, ruling out their participation in the effector phase of NAIP/NLRC4 activation. Moreover, cathepsins had no impact on NF-κB-mediated priming of pro-IL-1ß, thus suggesting these proteases act downstream of the NAIP/NLRC4 inflammasome activation. IL-1ß levels secreted in response to flagellin were reduced in the absence of either cathepsins or Gasdermin-D (GSDMD), a molecule involved in the induction of pyroptosis and cytokines release. Notably, IL-1ß secretion was abrogated in the absence of both GSDMD and cathepsins, demonstrating their non-redundant roles for the optimal IL-1ß release in response to cytosolic flagellin. Given the central role of NAIP/NLRC4 inflammasomes in controlling infection and, also, induction of inflammatory pathologies, many efforts have been made to uncover novel molecules involved in their regulation. Thus, our findings bring together a relevant contribution by describing the role of cathepsins as players in the NAIP/NLRC4-mediated responses.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Proteínas de Ligação ao Cálcio , Catepsinas , Gasderminas , Lisossomos , Proteína Inibidora de Apoptose Neuronal , Animais , Humanos , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Catepsinas/metabolismo , Deleção de Genes , Proteína Inibidora de Apoptose Neuronal/metabolismo , Gasderminas/metabolismo , Interleucina-1beta/metabolismo
19.
J Biol Chem ; 285(42): 32087-95, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20702413

RESUMO

Innate immune recognition of flagellin is shared by transmembrane TLR5 and cytosolic Nlrc4 (NOD-like receptor family CARD (caspase activation recruitment domain) domain containing 4)/Naip5 (neuronal apoptosis inhibitory protein 5). TLR5 activates inflammatory genes through MYD88 pathway, whereas Nlrc4 and Naip5 assemble multiprotein complexes called inflammasomes, culminating in caspase-1 activation, IL-1ß/IL-18 secretion, and pyroptosis. Although both TLR5 and Naip5/Nlrc4 pathways cooperate to clear infections, little is known about the relative anti-pathogen effector mechanisms operating through each of them. Here we show that the cytosolic flagellin (FLA-BSDot) was able to activate iNOS, an enzyme previously associated with TLR5 pathway. Using Nlrc4- or Naip5-deficient macrophages, we found that both receptors are involved in iNOS activation by FLA-BSDot. Moreover, distinct from extracellular flagellin (FLA-BS), iNOS activation by intracellular flagellin is completely abrogated in the absence of caspase-1. Interestingly, IL-1ß and IL-18 do not seem to be important for FLA-BSDot-mediated iNOS production. Together, our data defined an additional anti-pathogen effector mechanism operated through Naip5 and Nlrc4 inflammasomes and illustrated a novel signaling transduction pathway that activates iNOS.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Inflamação/imunologia , Complexos Multiproteicos/imunologia , Proteína Inibidora de Apoptose Neuronal/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação ao Cálcio/genética , Ativação Enzimática , Feminino , Flagelina/imunologia , Flagelina/farmacologia , Imunidade Inata/imunologia , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Proteína Inibidora de Apoptose Neuronal/genética , Transdução de Sinais/fisiologia , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo
20.
Cell Mol Life Sci ; 67(10): 1643-51, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20229126

RESUMO

Cells can die by distinct mechanisms with particular impacts on the immune response. In addition to apoptosis and necrosis, recent studies lead to characterization of a new pro-inflammatory form of cell death, pyroptosis. TLR and NLR, central innate immune sensors, can control infections by modulating host cell survival. In addition, TLRs can promote the induction of autophagy, thus promoting delivery of infecting pathogens to the lysosomes. On the other hand, activation of some NLR members, especially NLRC4 and NAIP5, leads to the infected cell death by pyroptosis, which is accompanied by secretion of the pro-inflammatory cytokines IL-1beta, IL-18, and IL-33. Data presented here illustrate how the compartmentalization of the innate immune sensors can influence the outcome of infections by controlling the fate of host cells.


Assuntos
Apoptose/imunologia , Autofagia/imunologia , Infecções/imunologia , Infecções/patologia , Inflamação/imunologia , Proteínas Adaptadoras de Sinalização NOD/imunologia , Receptores Toll-Like/imunologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA