Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(18): 10599-10608, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30107733

RESUMO

Passive air sampling of semivolatile organic compounds (SVOCs) is a relatively inexpensive method that facilitates extensive campaigns with numerous sampling sites. An important question in the design of passive-sampling networks concerns the number and location of samplers. We investigate this question with the example of 17 SVOCs sampled at 14 background sites across the Czech Republic. More than 200 time series (length 5-11 years) were used to characterize SVOC levels and trends in air between 2003 and 2015. Six polychlorinated biphenyls (PCBs), 6 polyaromatic hydrocarbons (PAHs), and 5 organochlorine pesticides (OCPs) at 14 sites were assessed using data from the MONET passive sampling network. Significant decreases were found for most PCBs and OCPs whereas hexachlorobenzene (HCB) and most PAHs showed (mostly insignificant) increases. Spatial variability was rather low for PCBs and OCPs except for dichlorodiphenyltrichloroethane (DDT) and rather high for PAHs. The variability of the SVOC levels and trends depends on characteristics of the sites including their remoteness, landscape, population, and pollution sources. The sites can be grouped in distinct clusters, which helps to identify similar and, thereby, potentially redundant sites. This information is useful when monitoring networks need to be optimized regarding the location and number of sites.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , República Tcheca , Monitoramento Ambiental
2.
Environ Sci Technol ; 51(12): 7047-7054, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28534402

RESUMO

Many attempts have been made to quantify the relationship between the amount of persistent organic pollutants sequestered by passive air sampling devices and their actual concentrations in ambient air. However, this information may not be necessary for some applications. In this study, two sets of 30 ten-year-long time series of simultaneous passive and high-volume active air sampling carried out at the Kosetice observatory in the Czech Republic were used for a comparison of temporal trends. Fifteen polyaromatic hydrocarbons, seven polychlorinated biphenyls and eight organochlorine pesticides were investigated. In most cases, a good agreement was observed between the trends derived from passive and active monitoring with the exception of several compounds obviously affected by sampling artifacts. Two sampling artifacts were observed: breakthrough of high-volume sampler filters for penta- and hexachlorobenzene and semiquantitative values for PAHs with a high molecular weight. It has been suggested before that annually aggregated results of passive air monitoring may be used directly for the assessment of the long-term behavior of these compounds. The extensive set of long-term data used in this study allowed us to confirm this finding and to demonstrate that it is also possible to derive temporal trends and the compounds' half-lives in air from the passive-sampling time series.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos , República Tcheca , Hidrocarbonetos Clorados , Bifenilos Policlorados
3.
Environ Pollut ; 220(Pt B): 1100-1111, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27865659

RESUMO

Much effort has been made to standardise sampling procedures, laboratory analysis, data analysis, etc. for semi volatile organic contaminants (SVOCs). Yet there are some unresolved issues in regards to comparing measurements from one of the most commonly used passive samplers (PAS), the polyurethane foam (PUF) disk PAS (PUF-PAS), between monitoring networks or different studies. One such issue is that there is no universal means to derive a sampling rate (Rs) or to calculate air concentrations (Cair) from PUF-PAS measurements for SVOCs. Cair was calculated from PUF-PAS measurements from a long-term monitoring program at a site in central Europe applying current understanding of passive sampling theory coupled with a consideration for the sampling of particle associated compounds. Cair were assessed against concurrent active air sampler (AAS) measurements. Use of "site-based/sampler-specific" variables: Rs, calculated using a site calibration, provided similar results for most gas-phase SVOCs to air concentrations derived using "default" values (commonly accepted Rs). Individual monthly PUF-PAS-derived air concentrations for the majority of the target compounds were significantly different (Wilcoxon signed-rank (WSR) test; p < 0.05) to AAS regardless of the input values (site/sampler based or default) used to calculate them. However, annual average PUF-PAS-derived air concentrations were within the same order of magnitude as AAS measurements except for the particle-phase polycyclic aromatic hydrocarbons (PAHs). Underestimation of PUF-derived air concentrations for particle-phase PAHs was attributed to a potential overestimation of the particle infiltration into the PUF-PAS chamber and underestimation of the particle bound fraction of PAHs.


Assuntos
Poluentes Atmosféricos/química , Monitoramento Ambiental/instrumentação , Poliuretanos/química , Compostos Orgânicos Voláteis/química , Calibragem , Monitoramento Ambiental/métodos , Europa (Continente) , Incerteza
4.
Sci Total Environ ; 456-457: 317-24, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23624005

RESUMO

Concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDE) have been determined in soil, mosses and tree bark samples collected from the same locations in North-Eastern Romania (region of Moldavia). PCBs and PBDEs were under the limit of quantification in all investigated samples. OCPs were the principal pollutants found in the analysed samples. In soil, moss and tree bark samples, DDT together with its metabolites, was the most abundant OCP ranging between 4.4-79, 5.8-95 and 11-440 ng g(-1) in the individual matrices, followed by HCH isomers with levels between 1.1-9.8, 8.9-130 and 12-130 ng g(-1) in soil, moss and bark respectively. To distinguish between the previous and current pollutant input and preferential biodegradation of DDT metabolites, the degradation ratios were calculated between the parent substances and their metabolites (DDT and HCH isomers). The investigation indicates no important pollution sources near sampling sites and reveals that OCPs originate mainly from long-range air transport processes and through atmospheric deposition of isomers volatilised from secondary sources. Discriminant function analysis was performed to determine whether OCPs uptake differ among the three matrices (soil, moss and tree bark). A good separation was observed between tree bark and the other two matrices. The most redundant variable appears to be p,p'-DDE (R(2)=0.336), while the most informative variable seems to be o,p'-DDT (R(2)=0.0361). Significant correlations were found between bark and moss concentrations for most α-HCH and p,p'-DDD (p<0.01). We have also investigated the enantiomeric signature of α-HCH. For bark and moss, EF values suggest preferential degradation of the (-)α-HCH enantiomer.


Assuntos
Briófitas/química , Monitoramento Ambiental/métodos , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Casca de Planta/química , Poluentes do Solo/análise , Romênia , Solo/química
5.
Environ Sci Pollut Res Int ; 19(6): 1963-70, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22718143

RESUMO

Urban, suburban and rural background air samples were collected in southern Ghana in 2008 employing polyurethane foam disc passive air samplers (PAS). PAS were analysed for organochlorine pesticides (OCPs), namely hexachlorocyclohexanes (α-, ß-, γ- and δ-hexachlorocyclohexane), dichlorodiphenyltrichloroethane including metabolites (o,p'- and p,p'-DDT, DDE and DDD), hexachlorobenzene, pentachlorobenzene, aldrin, dieldrin, endrins (endrin, endrin aldehyde and endrin ketone), isodrin, heptachlors (heptachlor, heptachlor epoxide A and heptachlor epoxide B), chlordanes (α-, ß-chlordane, oxychlordane and trans-nonachlor), endosulfans (α- and ß-endosulfan and endosulfan sulphate), methoxychlor and mirex using a gas chromatograph coupled to a mass spectrometer. The levels of OCPs ranged for the individual pesticides from below limit of quantification to 750 pg m(-3) (for α-endosulfan), and current agricultural application seemed to be the main primary source of most abundant pesticides. Re-volatilization of previously used pesticides from contaminated soils could not be ruled out either as potential secondary source of contamination, especially in warm and dry seasons and periods of intensive agricultural activities. Higher atmospheric concentrations were observed in November and December during the dry season compared to lower concentrations observed in June, July and August when the country experiences heavy rains. The highest seasonal variation was observed for currently used pesticides as α-endosulfan. A p,p'-DDT/p,p'-DDE ratio suggested recent inputs of fresh technical DDT.


Assuntos
Poluentes Atmosféricos/análise , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Ar/análise , Cidades , DDT/análise , Diclorodifenil Dicloroetileno/análise , Diclorodifenildicloroetano/análise , Endossulfano/análise , Gana , Heptacloro/análise , Hexaclorocicloexano/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA