Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Immunol ; 25(1): 166-177, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057617

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hybrid immunity is more protective than vaccination or previous infection alone. To investigate the kinetics of spike-reactive T (TS) cells from SARS-CoV-2 infection through messenger RNA vaccination in persons with hybrid immunity, we identified the T cell receptor (TCR) sequences of thousands of index TS cells and tracked their frequency in bulk TCRß repertoires sampled longitudinally from the peripheral blood of persons who had recovered from coronavirus disease 2019 (COVID-19). Vaccinations led to large expansions in memory TS cell clonotypes, most of which were CD8+ T cells, while also eliciting diverse TS cell clonotypes not observed before vaccination. TCR sequence similarity clustering identified public CD8+ and CD4+ TCR motifs associated with spike (S) specificity. Synthesis of longitudinal bulk ex vivo single-chain TCRß repertoires and paired-chain TCRÉ‘ß sequences from droplet sequencing of TS cells provides a roadmap for the rapid assessment of T cell responses to vaccines and emerging pathogens.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Linfócitos T CD8-Positivos , Vacinação , RNA Mensageiro/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Anticorpos Antivirais
2.
J Clin Microbiol ; 59(10): e0052721, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34288726

RESUMO

Determinants of protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require the development of well-standardized, reproducible antibody assays. This need has led to the emergence of a variety of neutralization assays. Head-to-head evaluation of different SARS-CoV-2 neutralization platforms could facilitate comparisons across studies and laboratories. Five neutralization assays were compared using 40 plasma samples from convalescent individuals with mild to moderate coronavirus disease 2019 (COVID-19): four cell-based systems using either live recombinant SARS-CoV-2 or pseudotyped viral particles created with lentivirus (LV) or vesicular stomatitis virus (VSV) packaging and one surrogate enzyme-linked immunosorbent assay (ELISA)-based test that measures inhibition of the spike protein receptor binding domain (RBD) binding its receptor human angiotensin converting enzyme 2 (hACE2). Vero cells, Vero E6 cells, HEK293T cells expressing hACE2, and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 were tested. All cell-based assays showed 50% neutralizing dilution (ND50) geometric mean titers (GMTs) that were highly correlated (Pearson r = 0.81 to 0.89) and ranged within 3.4-fold. The live virus assay and LV pseudovirus assays with HEK293T/hACE2 cells showed very similar mean titers, 141 and 178, respectively. ND50 titers positively correlated with plasma IgG targeting SARS-CoV-2 spike protein and RBD (r = 0.63 to 0.89), but moderately correlated with nucleoprotein IgG (r = 0.46 to 0.73). ND80 GMTs mirrored ND50 data and showed similar correlation between assays and with IgG concentrations. The VSV pseudovirus assay and LV pseudovirus assay with HEK293T/hACE2 cells in low- and high-throughput versions were calibrated against the WHO SARS-CoV-2 IgG standard. High concordance between the outcomes of cell-based assays with live and pseudotyped virions enables valid cross-study comparison using these platforms.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Chlorocebus aethiops , Células HEK293 , Humanos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/genética , Células Vero
3.
iScience ; 26(9): 107527, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664583

RESUMO

Because virus neutralization cannot solely explain vaccine-induced, antibody-mediated protection, antibody effector functions are being considered as a potential correlate of protection (CoP). However, measuring effector functions at a fixed serum dilution for high throughput purposes makes it difficult to distinguish between the effect of serum antibody concentration and antibody properties such as epitopes, subclass, and glycosylation. To address this issue, we evaluated antibody-dependent cellular phagocytosis (ADCP) assay against SARS-CoV-2 spike. Adjustment of serum samples to the same concentration of antigen-specific IgG prior to the ADCP assay revealed concentration-independent differences in ADCP after mRNA vaccination in subjects with and without prior SARS-CoV-2 infection not detectable in assay performed with fixed serum dilution. Phagocytosis measured at different concentrations of spike-specific IgG strongly correlated with the area under the curve (AUC) indicating that ADCP assay can be performed at a standardized antibody concentration for the high throughput necessary for vaccine trial analyses.

4.
Res Sq ; 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36263073

RESUMO

Almost three years into the SARS-CoV-2 pandemic, hybrid immunity is highly prevalent worldwide and more protective than vaccination or prior infection alone. Given emerging resistance of variant strains to neutralizing antibodies (nAb), it is likely that T cells contribute to this protection. To understand how sequential SARS-CoV-2 infection and mRNA-vectored SARS-CoV-2 spike (S) vaccines affect T cell clonotype-level expansion kinetics, we identified and cross-referenced TCR sequences from thousands of S-reactive single cells against deeply sequenced peripheral blood TCR repertoires longitudinally collected from persons during COVID-19 convalescence through booster vaccination. Successive vaccinations recalled memory T cells and elicited antigen-specific T cell clonotypes not detected after infection. Vaccine-related recruitment of novel clonotypes and the expansion of S-specific clones were most strongly observed for CD8+ T cells. Severe COVID-19 illness was associated with a more diverse CD4+ T cell response to SARS-CoV-2 both prior to and after mRNA vaccination, suggesting imprinting of CD4+ T cells by severe infection. TCR sequence similarity search algorithms revealed myriad public TCR clusters correlating with human leukocyte antigen (HLA) alleles. Selected TCRs from distinct clusters functionally recognized S in the predicted HLA context, with fine viral peptide requirements differing between TCRs. Most subjects tested had S-specific T cells in the nasal mucosa after a 3rd mRNA vaccine dose. The blood and nasal T cell responses to vaccination revealed by clonal tracking were more heterogeneous than nAb boosts. Analysis of bulk and single cell TCR sequences reveals T cell kinetics and diversity at the clonotype level, without requiring prior knowledge of T cell epitopes or HLA restriction, providing a roadmap for rapid assessment of T cell responses to emerging pathogens.

5.
Viruses ; 13(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34696505

RESUMO

The human Betacoronavirus OC43 is a common cause of respiratory viral infections in adults and children. Lung infections with OC43 are associated with mortality, especially in hematopoietic stem cell transplant recipients. Neutralizing antibodies play a major role in protection against many respiratory viral infections, but to date a live viral neutralization assay for OC43 has not been described. We isolated a human monoclonal antibody (OC2) that binds to the spike protein of OC43 and neutralizes the live virus derived from the original isolate of OC43. We used this monoclonal antibody to develop and test the performance of two readily accessible in vitro assays for measuring antibody neutralization, one utilizing cytopathic effect and another utilizing an ELISA of infected cells. We used both methods to measure the neutralizing activity of the OC2 monoclonal antibody and of human plasma. These assays could prove useful for studying humoral responses to OC43 and cross-neutralization with other medically important betacoronaviruses.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Coronavirus Humano OC43/imunologia , Testes de Neutralização/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Linhagem Celular , Resfriado Comum/imunologia , Resfriado Comum/patologia , Resfriado Comum/virologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Ensaio de Imunoadsorção Enzimática/métodos , Humanos
6.
JCI Insight ; 6(15)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34156975

RESUMO

The ectocervix is part of the lower female reproductive tract (FRT), which is susceptible to sexually transmitted infections (STIs). Comprehensive knowledge of the phenotypes and T cell receptor (TCR) repertoire of tissue-resident memory T cells (TRMs) in the human FRT is lacking. We took single-cell RNA-Seq approaches to simultaneously define gene expression and TCR clonotypes of the human ectocervix. There were significantly more CD8+ than CD4+ T cells. Unsupervised clustering and trajectory analysis identified distinct populations of CD8+ T cells with IFNGhiGZMBloCD69hiCD103lo or IFNGloGZMBhiCD69medCD103hi phenotypes. Little overlap was seen between their TCR repertoires. Immunofluorescence staining showed that CD103+CD8+ TRMs were preferentially localized in the epithelium, whereas CD69+CD8+ TRMs were distributed evenly in the epithelium and stroma. Ex vivo assays indicated that up to 14% of cervical CD8+ TRM clonotypes were HSV-2 reactive in HSV-2-seropositive persons, reflecting physiologically relevant localization. Our studies identified subgroups of CD8+ TRMs in the human ectocervix that exhibited distinct expression of antiviral defense and tissue residency markers, anatomic locations, and TCR repertoires that target anatomically relevant viral antigens. Optimization of the location, number, and function of FRT TRMs is an important approach for improving host defenses to STIs.


Assuntos
Antígenos CD/análise , Antígenos de Diferenciação de Linfócitos T/análise , Linfócitos T CD8-Positivos/imunologia , Colo do Útero , Herpesvirus Humano 2 , Cadeias alfa de Integrinas/análise , Lectinas Tipo C/análise , Imunidade Adaptativa , Linfócitos T CD4-Positivos/imunologia , Colo do Útero/imunologia , Colo do Útero/patologia , Colo do Útero/virologia , Feminino , Genes Codificadores dos Receptores de Linfócitos T/imunologia , Herpesvirus Humano 2/imunologia , Herpesvirus Humano 2/isolamento & purificação , Humanos , Memória Imunológica , Imunofenotipagem/métodos , Células T de Memória/imunologia , Mucosa/imunologia , Mucosa/patologia , Mucosa/virologia
7.
medRxiv ; 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32743610

RESUMO

Community-level seroprevalence surveys are needed to determine the proportion of the population with previous SARS-CoV-2 infection, a necessary component of COVID-19 disease surveillance. In May, 2020, we conducted a cross-sectional seroprevalence study of IgG antibodies for nucleocapsid of SARS-CoV-2 among the residents of Blaine County, Idaho, a ski resort community with high COVID-19 attack rates in late March and Early April (2.9% for ages 18 and older). Participants were selected from volunteers who registered via a secure web link, using prestratification weighting to the population distribution by age and gender within each ZIP Code. Participants completed a survey reporting their demographics and symptoms; 88% of volunteers who were invited to participate completed data collection survey and had 10 ml of blood drawn. Serology was completed via the Abbott Architect SARS-CoV-2 IgG immunoassay. Primary analyses estimated seroprevalence and 95% credible intervals (CI) using a hierarchical Bayesian framework to account for diagnostic uncertainty. Stratified models were run by age, sex, ZIP Code, ethnicity, employment status, and a priori participant-reported COVID-19 status. Sensitivity analyses to estimate seroprevalence included base models with post-stratification for ethnicity, age, and sex, with or without adjustment for multi-participant households. IgG antibodies to the virus that causes COVID-19 were found among 22.7% (95% CI: 20.1%, 25.5%) of residents of Blaine County. Higher levels of antibodies were found among residents of the City of Ketchum 34.8% (95% CI 29.3%, 40.5%), compared to Hailey 16.8% (95%CI 13.7%, 20.3%) and Sun Valley 19.4% (95% 11.8%, 28.4%). People who self-identified as not believing they had COVID-19 had the lowest prevalence 4.8% (95% CI 2.3%, 8.2%). The range of seroprevalence after correction for potential selection bias was 21.9% to 24.2%. This study suggests more than 80% of SARS-CoV-2 infections were not reported. Although Blaine County had high levels of SARS-CoV-2 infection, the community is not yet near the herd immunity threshold.

8.
medRxiv ; 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33330875

RESUMO

Determinants of protective immunity against SARS-CoV-2 infection require the development of well-standardized, reproducible antibody assays to be utilized in concert with clinical trials to establish correlates of risk and protection. This need has led to the appearance of a variety of neutralization assays used by different laboratories and companies. Using plasma samples from COVID-19 convalescent individuals with mild-to-moderate disease from a localized outbreak in a single region of the western US, we compared three platforms for SARS-CoV-2 neutralization: assay with live SARS-CoV-2, pseudovirus assay utilizing lentiviral (LV) and vesicular stomatitis virus (VSV) packaging, and a surrogate ELISA test. Vero, Vero E6, HEK293T cells expressing human angiotensin converting enzyme 2 (hACE2), and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 (TMPRSS2) were evaluated. Live-virus and LV-pseudovirus assay with HEK293T cells showed similar geometric mean titers (GMTs) ranging 141-178, but VSV-pseudovirus assay yielded significantly higher GMT (310 95%CI 211-454; p < 0.001). Fifty percent neutralizing dilution (ND50) titers from live-virus and all pseudovirus assay readouts were highly correlated (Pearson r = 0.81-0.89). ND50 titers positively correlated with plasma concentration of IgG against SARS-CoV-2 spike and receptor binding domain (RBD) ( r = 0.63-0.89), but moderately correlated with nucleoprotein IgG ( r = 0.46-0.73). There was a moderate positive correlation between age and spike (Spearman's rho=0.37, p=0.02), RBD (rho=0.39, p=0.013) and nucleoprotein IgG (rho=0.45, p=0.003). ND80 showed stronger correlation with age than ND50 (ND80 rho=0.51 (p=0.001), ND50 rho=0.28 (p=0.075)). Our data demonstrate high concordance between cell-based assays with live and pseudotyped virions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA