Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cephalalgia ; 39(2): 209-218, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29898611

RESUMO

BACKGROUND: The management of idiopathic intracranial hypertension focuses on reducing intracranial pressure to preserve vision and reduce headaches. There is sparse evidence to support the use of some of the drugs commonly used to manage idiopathic intracranial hypertension, therefore we propose to evaluate the efficacy of these drugs at lowering intracranial pressure in healthy rats. METHODS: We measured intracranial pressure in female rats before and after subcutaneous administration of acetazolamide, topiramate, furosemide, amiloride and octreotide at clinical doses (equivalent to a single human dose) and high doses (equivalent to a human daily dose). In addition, we measured intracranial pressure after oral administration of acetazolamide and topiramate. RESULTS: At clinical and high doses, subcutaneous administration of topiramate lowered intracranial pressure by 32% ( p = 0.0009) and 21% ( p = 0.015) respectively. There was no significant reduction in intracranial pressure noted with acetazolamide, furosemide, amiloride or octreotide at any dose. Oral administration of topiramate significantly lowered intracranial pressure by 22% ( p = 0.018), compared to 5% reduction with acetazolamide ( p = >0.999). CONCLUSION: Our in vivo studies demonstrated that both subcutaneous and oral administration of topiramate significantly lowers intracranial pressure. Other drugs tested, including acetazolamide, did not significantly reduce intracranial pressure. Future clinical trials evaluating the efficacy and side effects of topiramate in idiopathic intracranial hypertension patients would be of interest.


Assuntos
Acetazolamida/farmacologia , Pressão Intracraniana/efeitos dos fármacos , Topiramato/farmacologia , Amilorida/farmacologia , Animais , Anticonvulsivantes/farmacologia , Diuréticos/farmacologia , Feminino , Furosemida/farmacologia , Octreotida/farmacologia , Ratos , Ratos Sprague-Dawley
2.
NPJ Regen Med ; 6(1): 3, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414477

RESUMO

Fibrotic disease is a major cause of mortality worldwide, with fibrosis arising from prolonged inflammation and aberrant extracellular matrix dynamics. Compromised cellular and tissue repair processes following injury, infection, metabolic dysfunction, autoimmune conditions and vascular diseases leave tissues susceptible to unresolved inflammation, fibrogenesis, loss of function and scarring. There has been limited clinical success with therapies for inflammatory and fibrotic diseases such that there remains a large unmet therapeutic need to restore normal tissue homoeostasis without detrimental side effects. We investigated the effects of a newly formulated low molecular weight dextran sulfate (LMW-DS), termed ILB®, to resolve inflammation and activate matrix remodelling in rodent and human disease models. We demonstrated modulation of the expression of multiple pro-inflammatory cytokines and chemokines in vitro together with scar resolution and improved matrix remodelling in vivo. Of particular relevance, we demonstrated that ILB® acts, in part, by downregulating transforming growth factor (TGF)ß signalling genes and by altering gene expression relating to extracellular matrix dynamics, leading to tissue remodelling, reduced fibrosis and functional tissue regeneration. These observations indicate the potential of ILB® to alleviate fibrotic diseases.

3.
JCI Insight ; 6(10)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33848268

RESUMO

BACKGROUNDIdiopathic intracranial hypertension (IIH) is a condition predominantly affecting obese women of reproductive age. Recent evidence suggests that IIH is a disease of metabolic dysregulation, androgen excess, and an increased risk of cardiovascular morbidity. Here we evaluate systemic and adipose specific metabolic determinants of the IIH phenotype.METHODSIn fasted, matched IIH (n = 97) and control (n = 43) patients, we assessed glucose and insulin homeostasis and leptin levels. Body composition was assessed along with an interrogation of adipose tissue function via nuclear magnetic resonance metabolomics and RNA sequencing in paired omental and subcutaneous biopsies in a case-control study.RESULTSWe demonstrate an insulin- and leptin-resistant phenotype in IIH in excess of that driven by obesity. Adiposity in IIH is preferentially centripetal and is associated with increased disease activity and insulin resistance. IIH adipocytes appear transcriptionally and metabolically primed toward depot-specific lipogenesis.CONCLUSIONThese data show that IIH is a metabolic disorder in which adipose tissue dysfunction is a feature of the disease. Managing IIH as a metabolic disease could reduce disease morbidity and improve cardiovascular outcomes.FUNDINGThis study was supported by the UK NIHR (NIHR-CS-011-028), the UK Medical Research Council (MR/K015184/1), Diabetes UK, Wellcome Trust (104612/Z/14/Z), the Sir Jules Thorn Award, and the Midlands Neuroscience Teaching and Research Fund.


Assuntos
Adipócitos/metabolismo , Glicemia/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Obesidade , Pseudotumor Cerebral , Tecido Adiposo/metabolismo , Adulto , Biópsia , Estudos de Casos e Controles , Feminino , Humanos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/fisiopatologia , Pseudotumor Cerebral/metabolismo , Pseudotumor Cerebral/fisiopatologia , Adulto Jovem
4.
Sci Transl Med ; 9(404)2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835515

RESUMO

Current therapies for reducing raised intracranial pressure (ICP) under conditions such as idiopathic intracranial hypertension or hydrocephalus have limited efficacy and tolerability. Thus, there is a pressing need to identify alternative drugs. Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat diabetes and promote weight loss but have also been shown to affect fluid homeostasis in the kidney. We investigated whether exendin-4, a GLP-1R agonist, is able to modulate cerebrospinal fluid (CSF) secretion at the choroid plexus and subsequently reduce ICP in rats. We used tissue sections and cell cultures to demonstrate expression of GLP-1R in the choroid plexus and its activation by exendin-4, an effect blocked by the GLP-1R antagonist exendin 9-39. Acute treatment with exendin-4 reduced Na+- and K+-dependent adenosine triphosphatase activity, a key regulator of CSF secretion, in cell cultures. Finally, we demonstrated that administration of exendin-4 to female rats with raised ICP (hydrocephalic) resulted in a GLP-1R-mediated reduction in ICP. These findings suggest that GLP-1R agonists can reduce ICP in rodents. Repurposing existing GLP-1R agonist drugs may be a useful therapeutic strategy for treating raised ICP.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hidrocefalia/tratamento farmacológico , Hidrocefalia/fisiopatologia , Pressão Intracraniana , Peptídeos/uso terapêutico , Peçonhas/uso terapêutico , Animais , Plexo Corióideo/efeitos dos fármacos , Plexo Corióideo/metabolismo , Estado de Consciência/efeitos dos fármacos , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Exenatida , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Pressão Intracraniana/efeitos dos fármacos , Peptídeos/farmacologia , Mudanças Depois da Morte , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , ATPase Trocadora de Sódio-Potássio/metabolismo , Peçonhas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA