Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Am Chem Soc ; 140(36): 11402-11407, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30092139

RESUMO

A class of metal-organic frameworks (MOFs)-namely CD-MOFs-obtained from natural products has been grown in an epitaxial fashion as films on the surfaces of glass substrates, which are modified with self-assembled monolayers (SAMs) of γ-cyclodextrin (γ-CD) molecules. The SAMs are created by host-guest complexation of γ-CD molecules with surface-functionalized pyrene units. The CD-MOF films have continuous polycrystalline morphology with a structurally out-of-plane ( c-axial) orientation, covering an area of several square millimeters, with a thickness of ∼2 µm. Furthermore, this versatile host-guest strategy has been applied successfully in the growth of CD-MOFs as the shell on the curved surface of microparticles as well as in the integration of CD-MOF films into electrochemical devices for sensing carbon dioxide. In striking contrast to the control devices prepared from CD-MOF crystalline powders, these CD-MOF film-based devices display an enhancement in proton conductance of up to 300-fold. In addition, the CD-MOF film-based device exhibits more rapid and highly reversible CO2-sensing cycles under ambient conditions, with a 50-fold decrease in conductivity upon exposure to CO2 for 3 s which is recovered within 10 s upon re-exposure to air.

2.
Proc Natl Acad Sci U S A ; 112(36): 11161-8, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26283386

RESUMO

The organization of trisradical rotaxanes within the channels of a Zr6-based metal-organic framework (NU-1000) has been achieved postsynthetically by solvent-assisted ligand incorporation. Robust Zr(IV)-carboxylate bonds are forged between the Zr clusters of NU-1000 and carboxylic acid groups of rotaxane precursors (semirotaxanes) as part of this building block replacement strategy. Ultraviolet-visible-near-infrared (UV-Vis-NIR), electron paramagnetic resonance (EPR), and 1H nuclear magnetic resonance (NMR) spectroscopies all confirm the capture of redox-active rotaxanes within the mesoscale hexagonal channels of NU-1000. Cyclic voltammetry measurements performed on electroactive thin films of the resulting material indicate that redox-active viologen subunits located on the rotaxane components can be accessed electrochemically in the solid state. In contradistinction to previous methods, this strategy for the incorporation of mechanically interlocked molecules within porous materials circumvents the need for de novo synthesis of a metal-organic framework, making it a particularly convenient approach for the design and creation of solid-state molecular switches and machines. The results presented here provide proof-of-concept for the application of postsynthetic transformations in the integration of dynamic molecular machines with robust porous frameworks.

3.
Mol Pharm ; 14(5): 1831-1839, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28355489

RESUMO

Although ibuprofen is one of the most widely used nonsteroidal anti-inflammatory drugs (NSAIDs), it exhibits poor solubility in aqueous and physiological environments as a free acid. In order to improve its oral bioavailability and rate of uptake, extensive research into the development of new formulations of ibuprofen has been undertaken, including the use of excipients as well as ibuprofen salts, such as ibuprofen lysinate and ibuprofen, sodium salt. The ultimate goals of these studies are to reduce the time required for maximum uptake of ibuprofen, as this period of time is directly proportional to the rate of onset of analgesic/anti-inflammatory effects, and to increase the half-life of the drug within the body; that is, the duration of action of the effects of the drug. Herein, we present a pharmaceutical cocrystal of ibuprofen and the biocompatible metal-organic framework called CD-MOF. This metal-organic framework (MOF) is based upon γ-cyclodextrin (γ-CD) tori that are coordinated to alkali metal cations (e.g., K+ ions) on both their primary and secondary faces in an alternating manner to form a porous framework built up from (γ-CD)6 cubes. We show that ibuprofen can be incorporated within CD-MOF-1 either by (i) a crystallization process using the potassium salt of ibuprofen as the alkali cation source for production of the MOF or by (ii) absorption and deprotonation of the free-acid, leading to an uptake of 23-26 wt % of ibuprofen within the CD-MOF. In vitro viability studies revealed that the CD-MOF is inherently not affecting the viability of the cells with no IC50 value determined up to a concentration of 100 µM. Bioavailability investigations were conducted on mice, and the ibuprofen/CD-MOF pharmaceutical cocrystal was compared to control samples of the potassium salt of ibuprofen in the presence and absence of γ-CD. From these animal studies, we observed that the ibuprofen/CD-MOF-1 cocrystal exhibits the same rapid uptake of ibuprofen as the ibuprofen potassium salt control sample with a peak plasma concentration observed within 20 min, and the cocrystal has the added benefit of a 100% longer half-life in blood plasma samples and is intrinsically less hygroscopic than the pure salt form.


Assuntos
Ciclodextrinas/química , Ibuprofeno/análogos & derivados , Ibuprofeno/química , Lisina/análogos & derivados , gama-Ciclodextrinas/química , Anti-Inflamatórios não Esteroides/química , Disponibilidade Biológica , Lisina/química , Solubilidade
4.
J Am Chem Soc ; 138(7): 2292-301, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26812983

RESUMO

Porous metal-organic frameworks (MOFs) have been studied in the context of a wide variety of applications, particularly in relation to molecular storage and separation sciences. Recently, we reported a green, renewable framework material composed of γ-cyclodextrin (γ-CD) and alkali metal salts--namely, CD-MOF. This porous material has been shown to facilitate the separation of mixtures of alkylaromatic compounds, including the BTEX mixture (benzene, toluene, ethylbenzene, and the regioisomers of xylene), into their pure components, in both the liquid and gas phases, in an energy-efficient manner which could have implications for the petrochemical industry. Here, we report the ability of CD-MOF to separate a wide variety of mixtures, including ethylbenzene from styrene, haloaromatics, terpinenes, pinenes and other chiral compounds. CD-MOF retains saturated compounds to a greater extent than their unsaturated analogues. Also, the location of a double bond within a molecule influences its retention within the extended framework, as revealed in the case of the structural isomers of pinene and terpinine, where the isomers with exocyclic double bonds are more highly retained than those with endocyclic double bonds. The ability of CD-MOF to separate various mono- and disubstituted haloaromatic compounds appears to be controlled by both the size of the halogen substituents and the strength of the noncovalent bonding interactions between the analyte and the framework, an observation which has been confirmed by molecular simulations. Since CD-MOF is a homochiral framework, it is also able to resolve the enantiomers of chiral analytes, including those of limonene and 1-phenylethanol. These findings could lead to cheaper and easier-to-prepare stationary phases for HPLC separations when compared with other chiral stationary phases, such as CD-bonded silica particles.

6.
Chemistry ; 22(35): 12301-6, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27338246

RESUMO

Covalent and supramolecular polymerizations, both of which offer their own unique advantages, have emerged as popular strategies for making artificial materials. Herein, we describe a concurrent covalent and supramolecular polymerization strategy-namely, one which utilizes 1) a bis-azide-functionalized diazaperopyrenium dication that undergoes polymeriation covalently with a bis-alkyne-functionalized biphenyl derivative in one dimension as a result of a rapid and efficient ß-cyclodextrin(CD)-accelerated, cucurbit[6]uril(CB)-templated azide-alkyne cycloaddition, while 2) the aromatic core of the dication is able to dimerize in a criss-cross fashion by dint of π-π interactions, enabling simultaneous supramolecular assembly, resulting in an extended polymer network in an orthogonal dimension.

7.
Angew Chem Int Ed Engl ; 55(40): 12387-92, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27605257

RESUMO

Since the advent of mechanically interlocked molecules (MIMs), many approaches to templating their formation using various different noncovalent bonding interactions have been introduced and explored. In particular, employing radical-pairing interactions between BIPY(.+) units, the radical cationic state of 4,4'-bipyridinium (BIPY(2+) ) units, in syntheses is not only a convenient but also an attractive source of templation because of the unique properties residing in the resulting catenanes and rotaxanes. Herein, we report a copper-mediated procedure that enables the generation, in the MIM-precursors, of BIPY(.+) radical cations, while the metal itself, which is oxidized to Cu(I) , catalyzes the azide-alkyne cycloaddition reactions that result in the efficient syntheses of two catenanes and one rotaxane, assisted by radical-pairing interactions between the BIPY(.+) radical cations. This procedure not only provides a fillip for making and investigating the properties of Coulombically challenged catenanes and rotaxanes, but it also opens up the possibility of synthesizing artificial molecular machines which operate away from equilibrium.

8.
J Am Chem Soc ; 137(2): 876-85, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25493585

RESUMO

We report the synthesis of a series of homologous oligoviologens in which different numbers of 4,4'-bipyridinium (BIPY(2+)) subunits are linked by p-xylylene bridges, as a prelude to investigating how their radical cationic forms self-assemble both in solution and in the solid state. The strong radical-radical interactions between the radical cationic forms of the BIPY(2+) units-namely, BIPY(•+)-in these oligoviologens induce intra- or intermolecular folding of these homologues. UV/Vis/NIR spectroscopic studies and DFT quantum mechanics indicate that the folding of the shorter oligoviologens is dominated by intermolecular radical-radical interactions. In addition to intermolecular interactions, strong intramolecular radical-radical interactions, which give rise to an NIR absorption band at 900 nm, tend to play a crucial role in governing the folding of the longer oligoviologens. The solid-state superstructure of the oligoviologen with three BIPY(2+) units reveals that two intertwining chains fold together to form a dimer, stabilized by intermolecular radical-radical interactions. These dimers continue to stack in an infinite column through intermolecular radical-radical interactions between them. This research features an artificial biomimetic system which sustains delicate secondary and tertiary structures, reminiscent of those present in nucleic acids and proteins.


Assuntos
Conformação Molecular , Polímeros/química , Viologênios/química , Desenho de Fármacos , Radicais Livres/química , Modelos Moleculares
9.
J Am Chem Soc ; 137(6): 2392-9, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25581321

RESUMO

Although pristine C60 prefers to adopt a face-centered cubic packing arrangement in the solid state, it has been demonstrated that noncovalent-bonding interactions with a variety of molecular receptors lead to the complexation of C60 molecules, albeit usually with little or no control over their long-range order. Herein, an extended viologen-based cyclophane­ExBox2(4+)­has been employed as a molecular receptor which, not only binds C60 one-on-one, but also results in the columnar self-assembly of the 1:1 inclusion complexes under ambient conditions. These one-dimensional arrays of fullerenes stack along the long axis of needle-like single crystals as a consequence of multiple noncovalent-bonding interactions between each of the inclusion complexes. The electrical conductivity of these crystals is on the order of 10(-7) S cm(-1), even without any evacuation of oxygen, and matches the conductivity of high-quality, unfunctionalized C60-based materials that typically require stringent high-temperature vaporization techniques, along with the careful removal of oxygen and moisture, prior to measuring their conductance.


Assuntos
Fulerenos/química , Semicondutores , Cristalização , Cristalografia por Raios X
10.
J Am Chem Soc ; 137(17): 5706-19, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25806952

RESUMO

Metal-organic frameworks (MOFs) are known to facilitate energy-efficient separations of important industrial chemical feedstocks. Here, we report how a class of green MOFs-namely CD-MOFs-exhibits high shape selectivity toward aromatic hydrocarbons. CD-MOFs, which consist of an extended porous network of γ-cyclodextrins (γ-CDs) and alkali metal cations, can separate a wide range of benzenoid compounds as a result of their relative orientation and packing within the transverse channels formed from linking (γ-CD)6 body-centered cuboids in three dimensions. Adsorption isotherms and liquid-phase chromatographic measurements indicate a retention order of ortho- > meta- > para-xylene. The persistence of this regioselectivity is also observed during the liquid-phase chromatography of the ethyltoluene and cymene regioisomers. In addition, molecular shape-sorting within CD-MOFs facilitates the separation of the industrially relevant BTEX (benzene, toluene, ethylbenzene, and xylene isomers) mixture. The high resolution and large separation factors exhibited by CD-MOFs for benzene and these alkylaromatics provide an efficient, reliable, and green alternative to current isolation protocols. Furthermore, the isolation of the regioisomers of (i) ethyltoluene and (ii) cymene, together with the purification of (iii) cumene from its major impurities (benzene, n-propylbenzene, and diisopropylbenzene) highlight the specificity of the shape selectivity exhibited by CD-MOFs. Grand canonical Monte Carlo simulations and single component static vapor adsorption isotherms and kinetics reveal the origin of the shape selectivity and provide insight into the capability of CD-MOFs to serve as versatile separation platforms derived from renewable sources.

11.
J Am Chem Soc ; 135(31): 11603-13, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23815127

RESUMO

Ruthenium(II) polypyridyl complexes have emerged both as promising probes of DNA structure and as anticancer agents because of their unique photophysical and cytotoxic properties. A key consideration in the administration of those therapeutic agents is the optimization of their chemical reactivities to allow facile attack on the target sites, yet avoid unwanted side effects. Here, we present a drug delivery platform technology, obtained by grafting the surface of mesoporous silica nanoparticles (MSNPs) with ruthenium(II) dipyridophenazine (dppz) complexes. This hybrid nanomaterial displays enhanced luminescent properties relative to that of the ruthenium(II) dppz complex in a homogeneous phase. Since the coordination between the ruthenium(II) complex and a monodentate ligand linked covalently to the nanoparticles can be cleaved under irradiation with visible light, the ruthenium complex can be released from the surface of the nanoparticles by selective substitution of this ligand with a water molecule. Indeed, the modified MSNPs undergo rapid cellular uptake, and after activation with light, the release of an aqua ruthenium(II) complex is observed. We have delivered, in combination, the ruthenium(II) complex and paclitaxel, loaded in the mesoporous structure, to breast cancer cells. This hybrid material represents a promising candidate as one of the so-called theranostic agents that possess both diagnostic and therapeutic functions.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas/química , Compostos Organometálicos/administração & dosagem , Paclitaxel/administração & dosagem , Dióxido de Silício/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Luz , Modelos Moleculares , Compostos Organometálicos/farmacologia , Paclitaxel/farmacologia
12.
J Am Chem Soc ; 135(34): 12736-46, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23865381

RESUMO

Incorporation of two biphenylene-bridged 4,4'-bipyridinium extended viologen units into a para-phenylene-based cyclophane results in a synthetic receptor that is ~2 nm long and adopts a box-like geometry. This cyclophane, Ex(2)Box(4+), possesses the ability to form binary and ternary complexes with a myriad of guest molecules ranging from long π-electron-rich polycyclic aromatic hydrocarbons, such as tetracene, tetraphene, and chrysene, to π-electron-poor 2,6-dinitrotoluene, 1,2,4-trichlorobenzene, and both the 9,10- and 1,4-anthraquinone molecules. Moreover, Ex(2)Box(4+) is capable of forming one-to-one complexes with polyether macrocycles that consist of two π-electron-rich dioxynaphthalene units, namely, 1,5-dinaphtho[38]crown-10. This type of broad molecular recognition is possible because the electronic constitution of Ex(2)Box(4+) is such that the pyridinium rings located at the "ends" of the cyclophane are electron-poor and prefer to enter into donor-acceptor interactions with π-electron-rich guests, while the "middle" of the cyclophane, consisting of the biphenylene spacer, is more electron-rich and can interact with π-electron-poor guests. In some cases, these different modes of binding can act in concert to generate one-to-one complexes which possess high stability constants in organic media. The binding affinity of Ex(2)Box(4+) was investigated in the solid state by way of single-crystal X-ray diffraction and in solution by using UV-vis and NMR spectroscopy for 12 inclusion complexes consisting of the tetracationic cyclophane and the corresponding guests of different sizes, shapes, and electronic compositions. Additionally, density functional theory was carried out to elucidate the relative energetic differences between the different modes of binding of Ex(2)Box(4+) with anthracene, 9,10-anthraquinone, and 1,4-anthraquinone in order to understand the degree with which each mode of binding contributes to the overall encapsulation of each guest.

13.
J Am Chem Soc ; 135(45): 17019-30, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24059594

RESUMO

After the manner in which coenzymes often participate in the binding of substrates in the active sites of enzymes, pillar[5]arene, a macrocycle containing five hydroquinone rings linked through their para positions by methylene bridges, modifies the binding properties of cucurbit[6]uril, such that the latter templates azide-alkyne cycloadditions that do not occur in the presence of only the cucurbit[6]uril, a macrocycle composed of six glycoluril residues doubly linked through their nitrogen atoms to each other by methylene groups. Here, we describe how a combination of pillar[5]arene and cucurbit[6]uril interacts cooperatively with bipyridinium dications substituted on their nitrogen atoms with 2-azidoethyl- to 5-azidopentyl moieties to afford, as a result of orthogonal templation, two [4]rotaxanes and one [5]rotaxane in >90% yields inside 2 h at 55 °C in acetonitrile. Since the hydroxyl groups on pillar[5]arene and the carbonyl groups on cucurbit[6]uril form hydrogen bonds readily, these two macrocycles work together in a cooperative fashion to the extent that the four conformational isomers of pillar[5]arene can be trapped on the dumbbell components of the [4]rotaxanes. In the case of the [5]rotaxane, it is possible to isolate a compound containing two pillar[5]arene rings with local C5 symmetries. In addition to fixing the stereochemistries of the pillar[5]arene rings, the regiochemistries associated with the 1,3-dipolar cycloadditions have been extended in their constitutional scope. Under mild conditions, orthogonal recognition motifs have been shown to lead to templation with positive cooperativity that is fast and all but quantitative, as well as being green and efficient.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Compostos de Amônio Quaternário/química , Rotaxanos/síntese química , Hidrocarbonetos Aromáticos com Pontes/síntese química , Calixarenos , Ligação de Hidrogênio , Imidazóis/síntese química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Compostos de Amônio Quaternário/síntese química , Rotaxanos/química
14.
J Am Chem Soc ; 135(49): 18609-20, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24171644

RESUMO

Motor molecules present in nature convert energy inputs, such as a chemical fuel or incident photons of light, into directed motion and force biochemical systems away from thermal equilibrium. The ability not only to control relative movements of components in molecules but also to drive their components preferentially in one direction relative to each other using versatile stimuli is one of the keys to future technological applications. Herein, we describe a wholly synthetic small-molecule system that, under the influence of chemical reagents, electrical potential, or visible light, undergoes unidirectional relative translational motion. Altering the redox state of a cyclobis(paraquat-p-phenylene) ring simultaneously (i) inverts the relative heights of kinetic barriers presented by the two termini--one a neutral 2-isopropylphenyl group and the other a positively charged 3,5-dimethylpyridinium unit--of a constitutionally asymmetric dumbbell, which can impair the threading/dethreading of a [2]pseudorotaxane, and (ii) controls the ring's affinity for a 1,5-dioxynaphthalene binding site located in the dumbbell's central core. The formation and subsequent dissociation of the [2]pseudorotaxane by passage of the ring over the neutral and positively charged termini of the dumbbell component in one, and only one, direction relatively defined has been demonstrated by (i) spectroscopic ((1)H NMR and UV/vis) means and cyclic voltammetry as well as with (ii) DFT calculations and by (iii) comparison with control compounds in the shape of constitutionally symmetrical [2]pseudorotaxanes, one with two positively charged ends and the other with two neutral ends. The operation of the system relies solely on reversible, yet stable, noncovalent bonding interactions. Moreover, in the presence of a photosensitizer, visible-light energy is the only fuel source that is needed to drive the unidirectional molecular translation, making it feasible to repeat the operation numerous times without the buildup of byproducts.


Assuntos
Luz , Proteínas Motores Moleculares/química
15.
Inorg Chem ; 52(6): 2854-61, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23432138

RESUMO

Three structures, based on γ-cyclodextrin (γ-CD) and metal ions (Cu(2+), Li(+), Na(+), and Rb(+)), have been prepared in aqueous and alkaline media and characterized structurally by single-crystal X-ray diffraction. Their dimeric assemblies adopt cylindrical channels along the c axes in the crystals. Coordinative and hydrogen bonding between the cylinders and the solvent molecules lead to the formation of two-dimensional sheets, with the identity of the alkali-metal ion strongly influencing the precise nature of the solid-state structures. In the case of the Rb(+) complex, coordinative bonding involving the Rb(+) ions leads to the formation of an extended two-dimensional structure. Nonbound solvent molecules can be removed, and gas isotherm analyses confirm the permanent porosity of these new complexes. Carbon dioxide (CO2) adsorption studies show that the extended structure, obtained upon crystallization of the Rb(+)-based sandwich-type dimers, has the highest CO2 sequestration ability of the three γ-CD complexes reported.

16.
Chem Soc Rev ; 41(14): 4827-59, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22648395

RESUMO

Manipulating and controlling the self-organisation of small collections of molecules, as an alternative to investigating individual molecules, has motivated researchers bent on processing and storing information in molecular electronic devices (MEDs). Although numerous ingenious examples of single-molecule devices have provided fundamental insights into their molecular electronic properties, MEDs incorporating hundreds to thousands of molecules trapped between wires in two-dimensional arrays within crossbar architectures offer a glimmer of hope for molecular memory applications. In this critical review, we focus attention on the collective behaviour of switchable mechanically interlocked molecules (MIMs)--specifically, bistable rotaxanes and catenanes--which exhibit reset lifetimes between their ON and OFF states ranging from seconds in solution to hours in crossbar devices. When these switchable MIMs are introduced into high viscosity polymer matrices, or self-assembled as monolayers onto metal surfaces, both in the form of nanoparticles and flat electrodes, or organised as tightly packed islands of hundreds and thousands of molecules sandwiched between two electrodes, the thermodynamics which characterise their switching remain approximately constant while the kinetics associated with their reset follow an intuitively predictable trend--that is, fast when they are free in solution and sluggish when they are constrained within closely packed monolayers. The importance of seamless interactions and constant feedback between the makers, the measurers and the modellers in establishing the structure-property relationships in these integrated functioning systems cannot be stressed enough as rationalising the many different factors that impact device performance becomes more and more demanding. The choice of electrodes, as well as the self-organised superstructures of the monolayers of switchable MIMs employed in the molecular switch tunnel junctions (MSTJs) associated with the crossbars of these MEDs, have a profound influence on device operation and performance. It is now clear, after much investigation, that a distinction should be drawn between two types of switching that can be elicited from MSTJs. One affords small ON/OFF ratios and is a direct consequence of the switching in bistable MIMs that leads to a relatively small remnant molecular signature--an activated chemical process. The other leads to a very much larger signature and ON/OFF ratios resulting from physical or chemical changes in the electrodes themselves. Control experiments with various compounds, including degenerate catenanes and free dumbbells, which cannot and do not switch, are crucial in establishing the authenticity of the small ON/OFF ratios and remnant molecular signatures produced by bistable MIMs. Moreover, experiments conducted on monolayers in MSTJs of molecules designed to switch and molecules designed not to switch have been probed directly by spectroscopic and other means in support of MEDs that store information through switching collections of bistable MIMs contained in arrays of MSTJs. In the quest for the next generation of MEDs, it is likely that monolayers of bistable MIMs will be replaced by robust crystalline extended structures wherein the switchable components, derived from bistable MIMs, are organised precisely in a periodic manner.

17.
J Am Chem Soc ; 134(1): 406-17, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22092094

RESUMO

The binding of alkali and alkaline earth metal cations by macrocyclic and diazamacrobicyclic polyethers, composed of ordered arrays of hard oxygen (and nitrogen) donor atoms, underpinned the development of host-guest supramolecular chemistry in the 1970s and 1980s. The arrangement of -OCCO- and -OCCN- chelating units in these preorganized receptors, including, but not limited to, crown ethers and cryptands, is responsible for the very high binding constants observed for their complexes with Group IA and IIA cations. The cyclodextrins (CDs), cyclic oligosaccharides derived microbiologically from starch, also display this -OCCO- bidentate motif on both their primary and secondary faces. The self-assembly, in aqueous alcohol, of infinite networks of extended structures, which have been termed CD-MOFs, wherein γ-cyclodextrin (γ-CD) is linked by coordination to Group IA and IIA metal cations to form metal-organic frameworks (MOFs), is reported. CD-MOF-1 and CD-MOF-2, prepared on the gram-scale from KOH and RbOH, respectively, form body-centered cubic arrangements of (γ-CD)(6) cubes linked by eight-coordinate alkali metal cations. These cubic CD-MOFs are (i) stable to the removal of solvents, (ii) permanently porous, with surface areas of ~1200 m(2) g(-1), and (iii) capable of storing gases and small molecules within their pores. The fact that the -OCCO- moieties of γ-CD are not prearranged in a manner conducive to encapsulating single metal cations has led to our isolating other infinite frameworks, with different topologies, from salts of Na(+), Cs(+), and Sr(2+). This lack of preorganization is expressed emphatically in the case of Cs(+), where two polymorphs assemble under identical conditions. CD-MOF-3 has the cubic topology observed for CD-MOFs 1 and 2, while CD-MOF-4 displays a channel structure wherein γ-CD tori are perfectly stacked in one dimension in a manner reminiscent of the structures of some γ-CD solvates, but with added crystal stability imparted by metal-ion coordination. These new MOFs demonstrate that the CDs can indeed function as ligands for alkali and alkaline earth metal cations in a manner similar to that found with crown ethers. These inexpensive, green, nanoporous materials exhibit absorption properties which make them realistic candidates for commercial development, not least of all because edible derivatives, fit for human consumption, can be prepared entirely from food-grade ingredients.


Assuntos
Compostos Organometálicos/química , gama-Ciclodextrinas/química , Adsorção , Gases/química , Modelos Moleculares , Conformação Molecular , Porosidade , Potássio/química
18.
J Am Chem Soc ; 134(39): 16275-88, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23002805

RESUMO

The mechanism governing the redox-stimulated switching behavior of a tristable [2]rotaxane consisting of a cyclobis(paraquat-p-phenylene) (CBPQT(4+)) ring encircling a dumbbell, containing tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) recognition units which are separated from each other along a polyether chain carrying 2,6-diisopropylphenyl stoppers by a 4,4'-bipyridinium (BIPY(2+)) unit, is described. The BIPY(2+) unit acts to increase the lifetime of the metastable state coconformation (MSCC) significantly by restricting the shuttling motion of the CBPQT(4+) ring to such an extent that the MSCC can be isolated in the solid state and is stable for weeks on end. As controls, the redox-induced mechanism of switching of two bistable [2]rotaxanes and one bistable [2]catenane composed of CBPQT(4+) rings encircling dumbbells or macrocyclic polyethers, respectively, that contain a BIPY(2+) unit with either a TTF or DNP unit, is investigated. Variable scan-rate cyclic voltammetry and digital simulations of the tristable and bistable [2]rotaxanes and [2]catenane reveal a mechanism which involves a bisradical state coconformation (BRCC) in which only one of the BIPY(•+) units in the CBPQT(2(•+)) ring is oxidized to the BIPY(2+) dication. This observation of the BRCC was further confirmed by theoretical calculations as well as by X-ray crystallography of the [2]catenane in its bisradical tetracationic redox state. It is evident that the incorporation of a kinetic barrier between the donor recognition units in the tristable [2]rotaxane can prolong the lifetime and stability of the MSCC, an observation which augurs well for the development of nonvolatile molecular flash memory devices.

19.
Chemistry ; 18(49): 15632-49, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23090871

RESUMO

Molecular gauge blocks, based on 1-7, 9-11 paraxylene rings, have been synthesized as part of a homologous series of oligoparaxylenes (OPXs) with a view to providing a molecular tool box for the construction of nano architectures-such as spheres, cages, capsules, metal-organic frameworks (MOFs), metal-organic polyhedrons (MOPs) and covalent-organic frameworks (COFs), to name but a few-of well-defined sizes and shapes. Twisting between the planes of contiguous paraxylene rings is generated by the steric hindrance associated with the methyl groups and leads to the existence of soluble molecular gauge blocks without the need, at least in the case of the lower homologues, to introduce long aliphatic side chains onto the phenylene rings in the molecules. Although soluble molecular gauge blocks with up to seven consecutive benzenoid rings have been prepared employing repeating paraxylene units, in the case of the higher homologues it becomes necessary to introduce hexyl groups instead of methyl groups onto selected phenylene rings to maintain solubility. A hexyl-doped compound with seven substituted phenylene rings was found to be an organogelator, exhibiting thermally reversible gelation and a critical gelation concentration of 10 mM in dimethyl sulfoxide. Furthermore, control over the morphology of a series of hexyl-doped OPXs to give microfibers, microaggregates, or nanofibers, was observed as a function of their lengths according to images obtained by scanning electron microscopy. The modular syntheses of the paraphenylene derivatives rely heavily on Suzuki-Miyaura cross-coupling reactions. The lack of π-π conjugation in these derivatives that is responsible for their enhanced solubilities was corroborated by UV/Vis and fluorescent spectroscopy. In one particular series of model OPXs, dynamic (1)H NMR spectroscopy was used to probe the stereochemical consequences of having from one up to five axes of chirality present in the same molecule. The Losanitsch sequence for the compounds with 1-3 chiral axes was established, and a contemporary mathematical way was found to describe the sequence. The development of the ways and means to make molecular gauge building blocks will have positive repercussions on the control of nanostructures in general. Their incorporation into extended structures with the MOF-74 topology provides an excellent demonstration of the potential usefulness of these molecular gauge blocks.


Assuntos
Metais/química , Nanoestruturas/química , Compostos Organometálicos/química , Xilenos/química , Xilenos/síntese química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Espectrofotometria Ultravioleta , Estereoisomerismo
20.
Angew Chem Int Ed Engl ; 51(29): 7231-5, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22700287

RESUMO

It's just an illusion: Above a critical chain length, where oligomers contain five or more recognition units, apparently infinite donor-acceptor polypseudorotaxanes are formed in the solid state (see picture). X-ray crystallographic analyses of three different examples have shown that although the oligomeric chains are undoubtedly discrete and monodisperse, they nevertheless appear to be infinite in the crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA