Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Glob Chang Biol ; 29(11): 3205-3220, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36907979

RESUMO

Warming-induced changes in precipitation regimes, coupled with anthropogenically enhanced nitrogen (N) deposition, are likely to increase the prevalence, duration, and magnitude of soil respiration pulses following wetting via interactions among temperature and carbon (C) and N availability. Quantifying the importance of these interactive controls on soil respiration is a key challenge as pulses can be large terrestrial sources of atmospheric carbon dioxide (CO2 ) over comparatively short timescales. Using an automated sensor system, we measured soil CO2 flux dynamics in the Colorado Desert-a system characterized by pronounced transitions from dry-to-wet soil conditions-through a multi-year series of experimental wetting campaigns. Experimental manipulations included combinations of C and N additions across a range of ambient temperatures and across five sites varying in atmospheric N deposition. We found soil CO2 pulses following wetting were highly predictable from peak instantaneous CO2 flux measurements. CO2 pulses consistently increased with temperature, and temperature at time of wetting positively correlated to CO2 pulse magnitude. Experimentally adding N along the N deposition gradient generated contrasting pulse responses: adding N increased CO2 pulses in low N deposition sites, whereas adding N decreased CO2 pulses in high N deposition sites. At a low N deposition site, simultaneous additions of C and N during wetting led to the highest observed soil CO2 fluxes reported globally at 299.5 µmol CO2  m-2  s-1 . Our results suggest that soils have the capacity to emit high amounts of CO2 within small timeframes following infrequent wetting, and pulse sizes reflect a non-linear combination of soil resource and temperature interactions. Importantly, the largest soil CO2 emissions occurred when multiple resources were amended simultaneously in historically resource-limited desert soils, pointing to regions experiencing simultaneous effects of desertification and urbanization as key locations in future global C balance.


Assuntos
Dióxido de Carbono , Solo , Temperatura , Nitrogênio , Colorado , Água
2.
Environ Sci Technol ; 53(16): 9378-9388, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31339712

RESUMO

The Salton Sea Basin in California suffers from poor air quality, and an expanding dry lakebed (playa) presents a new potential dust source. In 2017-18, depositing dust was collected approximately monthly at five sites in the Salton Sea Basin and analyzed for total elemental and soluble anion content. These data were analyzed with Positive Matrix Factorization (PMF). The PMF method resolved seven dust sources with distinct compositional markers: Playa (Mg, SO42-, Na, Ca, Sr), Colorado Alluvium (U, Ca), Local Alluvium (Al, Fe, Ti), Agricultural Burning (K, PO43-), Sea Spray (Na, Cl-, Se), Anthropogenic Trace Metals (Sb, As, Zn, Cd, Pb, Na), and Anthropogenic Copper (Cu). All sources except Local Alluvium are influenced or caused by current or historic anthropogenic activities. PMF attributed 55 to 80% of the measured dust flux to these six sources. The dust fluxes at the site where the playa source was dominant (89 g m-2 yr-1) were less than, but approaching the scale of, those observed at Owens Lake playas in the late 20th century. Playa emissions in the Salton Sea region were most intense during the late spring to early summer and contain high concentrations of evaporite mineral tracers, particularly Mg, Ca, and SO42-.


Assuntos
Poluentes Atmosféricos , Poeira , California , Colorado , Monitoramento Ambiental , Material Particulado
3.
Environ Microbiol Rep ; 16(3): e13251, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778789

RESUMO

We conducted a research campaign in a neotropical rainforest in Costa Rica throughout the drought phase of an El-Nino Southern Oscillation event to determine microbial community dynamics and soil C fluxes. Our study included nests of the leafcutter ant Atta cephalotes, as soil disturbances made by these ecosystem engineers may influence microbial drought response. Drought decreased the diversity of microbes and the abundance of core microbiome taxa, including Verrucomicrobial bacteria and Sordariomycete fungi. Despite initial responses of decreasing diversity and altered composition, 6 months post-drought the microbiomes were similar to pre-drought conditions, demonstrating the resilience of soil microbial communities to drought events. A. cephalotes nests altered fungal composition in the surrounding soil, and reduced both fungal mortality and growth of Acidobacteria post-drought. Drought increased CH4 consumption in soils due to lower soil moisture, and A. cephalotes nests decrease the variability of CH4 emissions in some soil types. CH4 emissions were tracked by the abundance of methanotrophic bacteria and fungal composition. These results characterize the microbiome of tropical soils across both time and space during drought and provide evidence for the importance of leafcutter ant nests in shaping soil microbiomes and enhancing microbial resilience during climatic perturbations.


Assuntos
Formigas , Bactérias , Secas , Fungos , Microbiota , Floresta Úmida , Microbiologia do Solo , Clima Tropical , Formigas/microbiologia , Formigas/fisiologia , Animais , Fungos/classificação , Fungos/fisiologia , Fungos/isolamento & purificação , Costa Rica , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Solo/química , Florestas
4.
Sci Adv ; 9(49): eadj1989, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38055826

RESUMO

Soils are the largest source of atmospheric nitrous oxide (N2O), a powerful greenhouse gas. Dry soils rarely harbor anoxic conditions to favor denitrification, the predominant N2O-producing process, yet, among the largest N2O emissions have been measured after wetting summer-dry desert soils, raising the question: Can denitrifiers endure extreme drought and produce N2O immediately after rainfall? Using isotopic and molecular approaches in a California desert, we found that denitrifiers produced N2O within 15 minutes of wetting dry soils (site preference = 12.8 ± 3.92 per mil, δ15Nbulk = 18.6 ± 11.1 per mil). Consistent with this finding, we detected nitrate-reducing transcripts in dry soils and found that inhibiting microbial activity decreased N2O emissions by 59%. Our results suggest that despite extreme environmental conditions-months without precipitation, soil temperatures of ≥40°C, and gravimetric soil water content of <1%-bacterial denitrifiers can account for most of the N2O emitted when dry soils are wetted.


Assuntos
Bactérias , Desnitrificação , Solo , Óxido Nitroso/análise , California
5.
Sci Total Environ ; 858(Pt 3): 159882, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334668

RESUMO

BACKGROUND: A high incidence of asthma is prevalent among residents near the Salton Sea, a large inland terminal lake in southern California. This arid region has high levels of ambient particulate matter (PM); yet while high PM levels are often associated with asthma in many environments, it is possible that the rapidly retreating lake, and exposed playa or lakebed, may contribute components with a specific role in promoting asthma symptoms. OBJECTIVES: Our hypothesis is that asthma may be higher in residents closest to the Salton Sea due to chronic exposures to playa dust. Playa emissions may be concentrating dissolved material from the lake, with microbial components capable of inducing pulmonary innate immune responses. To test this hypothesis, we used a mouse model of aerosol exposures to assess the effects of playa dust. METHODS: From dust collected around the Salton Sea region, aqueous extracts were used to generate aerosols, which were injected into an environmental chamber for mouse exposure studies. We compared the effects of exposure to Salton Sea aerosols, as well as to known immunostimulatory reference materials. Acute 48-h and chronic 7-day exposures were compared, with lungs analyzed for inflammatory cell recruitment and gene expression. RESULTS: Dust from sites nearest to the Salton Sea triggered lung neutrophil inflammation that was stronger at 48-h but reduced at 7-days. This acute inflammatory profile and kinetics resembled the response to innate immune ligands LTA and LPS while distinct from the classic allergic response to Alternaria. CONCLUSION: Lung inflammatory responses to Salton Sea dusts are similar to acute innate immune responses, raising the possibility that microbial components are entrained in the dust, promoting inflammation. This effect highlights the health risks at drying terminal lakes from inflammatory components in dust emissions from exposed lakebed.


Assuntos
Poeira , Pneumonia , Animais , Camundongos , Pneumonia/induzido quimicamente , Imunidade Inata
6.
Front Microbiol ; 13: 856454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836417

RESUMO

Dust provides an ecologically significant input of nutrients, especially in slowly eroding ecosystems where chemical weathering intensity limits nutrient inputs from underlying bedrock. In addition to nutrient inputs, incoming dust is a vector for dispersing dust-associated microorganisms. While little is known about dust-microbial dispersal, dust deposits may have transformative effects on ecosystems far from where the dust was emitted. Using molecular analyses, we examined spatiotemporal variation in incoming dust microbiomes along an elevational gradient within the Sierra Nevada of California. We sampled throughout two dry seasons and found that dust microbiomes differed by elevation across two summer dry seasons (2014 and 2015), which corresponded to competing droughts in dust source areas. Dust microbial taxa richness decreased with elevation and was inversely proportional to dust heterogeneity. Likewise, dust phosphorus content increased with elevation. At lower elevations, early season dust microbiomes were more diverse than those found later in the year. The relative abundances of microbial groups shifted during the summer dry season. Furthermore, mutualistic fungal diversity increased with elevation, which may have corresponded with the biogeography of their plant hosts. Although dust fungal pathogen diversity was equivalent across elevations, elevation and sampling month interactions for the relative abundance, diversity, and richness of fungal pathogens suggest that these pathogens differed temporally across elevations, with potential implications for humans and wildlife. This study shows that landscape topography and droughts in source locations may alter the composition and diversity of ecologically relevant dust-associated microorganisms.

7.
J Inflamm Res ; 14: 4035-4052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456580

RESUMO

PURPOSE: The Salton Sea, California's largest lake, is designated as an agricultural drainage reservoir. In recent years, the lake has experienced shrinkage due to reduced water sources, increasing levels of aerosolized dusts in surrounding regions. Communities surrounding the Salton Sea have increased asthma prevalence versus the rest of California; however, a connection between dust inhalation and lung health impacts has not been defined. METHODS: We used an established intranasal dust exposure murine model to study the lung inflammatory response following single or repetitive (7-day) exposure to extracts of dusts collected in regions surrounding the Salton Sea (SSDE), complemented with in vitro investigations assessing SSDE impacts on the airway epithelium. RESULTS: In these investigations, single or repetitive SSDE exposure induced significant lung inflammatory cytokine release concomitant with neutrophil influx. Repetitive SSDE exposure led to significant lung eosinophil recruitment and altered expression of genes associated with allergen-mediated immune response, including Clec4e. SSDE treatment of human bronchial epithelial cells (BEAS-2B) induced inflammatory cytokine production at 5- and 24-hours post-treatment. When BEAS-2B were exposed to protease activity-depleted SSDE (PDSSDE) or treated with SSDE in the context of protease-activated receptor-1 and -2 antagonism, inflammatory cytokine release was decreased. Furthermore, repetitive exposure to PDSSDE led to decreased neutrophil and eosinophilic influx and IL-6 release in mice compared to SSDE-challenged mice. CONCLUSION: These investigations demonstrate potent lung inflammatory responses and tissue remodeling in response to SSDE, in part due to environmental proteases found within the dusts. These studies provide the first evidence supporting a link between environmental dust exposure, protease-mediated immune activation, and respiratory disease in the Salton Sea region.

8.
Rev Sci Instrum ; 90(3): 035115, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30927824

RESUMO

Air pollution poses a significant threat to the environment and human health. Most in vivo health studies conducted regarding air pollutants, including particulate matter (PM) and gas phase pollutants, have been either through traditional medical intranasal treatment or using a tiny chamber, which limit animal activities. In this study, we designed and tested a large, whole-body, multiple animal exposure chamber with uniform dispersion and exposure stability for animal studies. The chamber simultaneously controls particle size distribution and PM mass concentration. Two different methods were used to generate aerosol suspension through either soluble material (Alternaria extract), liquid particle suspension (nanosilica solution), or dry powder (silica powder). We demonstrate that the chamber system provides well controlled and characterized whole animal exposures, where dosage is by inhalation of particulate matter.


Assuntos
Poluição do Ar/análise , Monitoramento Ambiental/instrumentação , Animais , Desenho de Equipamento , Resíduos Industriais/análise , Nanopartículas/química , Tamanho da Partícula , Dióxido de Silício/análise , Dióxido de Silício/química , Suínos
9.
mBio ; 10(5)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575762

RESUMO

While most bacterial and archaeal taxa living in surface soils remain undescribed, this problem is exacerbated in deeper soils, owing to the unique oligotrophic conditions found in the subsurface. Additionally, previous studies of soil microbiomes have focused almost exclusively on surface soils, even though the microbes living in deeper soils also play critical roles in a wide range of biogeochemical processes. We examined soils collected from 20 distinct profiles across the United States to characterize the bacterial and archaeal communities that live in subsurface soils and to determine whether there are consistent changes in soil microbial communities with depth across a wide range of soil and environmental conditions. We found that bacterial and archaeal diversity generally decreased with depth, as did the degree of similarity of microbial communities to those found in surface horizons. We observed five phyla that consistently increased in relative abundance with depth across our soil profiles: Chloroflexi, Nitrospirae, Euryarchaeota, and candidate phyla GAL15 and Dormibacteraeota (formerly AD3). Leveraging the unusually high abundance of Dormibacteraeota at depth, we assembled genomes representative of this candidate phylum and identified traits that are likely to be beneficial in low-nutrient environments, including the synthesis and storage of carbohydrates, the potential to use carbon monoxide (CO) as a supplemental energy source, and the ability to form spores. Together these attributes likely allow members of the candidate phylum Dormibacteraeota to flourish in deeper soils and provide insight into the survival and growth strategies employed by the microbes that thrive in oligotrophic soil environments.IMPORTANCE Soil profiles are rarely homogeneous. Resource availability and microbial abundances typically decrease with soil depth, but microbes found in deeper horizons are still important components of terrestrial ecosystems. By studying 20 soil profiles across the United States, we documented consistent changes in soil bacterial and archaeal communities with depth. Deeper soils harbored communities distinct from those of the more commonly studied surface horizons. Most notably, we found that the candidate phylum Dormibacteraeota (formerly AD3) was often dominant in subsurface soils, and we used genomes from uncultivated members of this group to identify why these taxa are able to thrive in such resource-limited environments. Simply digging deeper into soil can reveal a surprising number of novel microbes with unique adaptations to oligotrophic subsurface conditions.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Microbiologia do Solo , Archaea/classificação , Archaea/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA