Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
EMBO J ; 42(20): e115307, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37691515

RESUMO

Removal of polyploid cells is essential to preventing cancer and restricting tumor growth. A new study published in The EMBO Journal shows assembly of the NEMO-PIDDosome on extra centrioles. Activation of this protein complex leads to NF-κB activation that, in turn, induces NK cell-mediated cell clearance.


Assuntos
NF-kappa B , Transdução de Sinais , Humanos , Regulação da Expressão Gênica , Quinase I-kappa B/metabolismo , Células Matadoras Naturais , NF-kappa B/metabolismo , Poliploidia
2.
J Immunol ; 206(8): 1878-1889, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33741688

RESUMO

Excessive release of heme from RBCs is a key pathophysiological feature of several disease states, including bacterial sepsis, malaria, and sickle cell disease. This hemolysis results in an increased level of free heme that has been implicated in the inflammatory activation of monocytes, macrophages, and the endothelium. In this study, we show that extracellular heme engages the human inflammatory caspases, caspase-1, caspase-4, and caspase-5, resulting in the release of IL-1ß. Heme-induced IL-1ß release was further increased in macrophages from patients with sickle cell disease. In human primary macrophages, heme activated caspase-1 in an inflammasome-dependent manner, but heme-induced activation of caspase-4 and caspase-5 was independent of canonical inflammasomes. Furthermore, we show that both caspase-4 and caspase-5 are essential for heme-induced IL-1ß release, whereas caspase-4 is the primary contributor to heme-induced cell death. Together, we have identified that extracellular heme is a damage-associated molecular pattern that can engage canonical and noncanonical inflammasome activation as a key mediator of inflammation in macrophages.


Assuntos
Anemia Falciforme/metabolismo , Caspases Iniciadoras/metabolismo , Caspases/metabolismo , Eritrócitos/fisiologia , Inflamassomos/metabolismo , Inflamação/metabolismo , Macrófagos/imunologia , Alarminas/metabolismo , Morte Celular , Células Cultivadas , Heme/metabolismo , Hemólise , Humanos , Interleucina-1beta/metabolismo , Regulação para Cima
3.
Mol Cell ; 57(5): 860-872, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25702873

RESUMO

During apoptosis, the mitochondrial outer membrane is permeabilized, leading to the release of cytochrome c that activates downstream caspases. Mitochondrial outer membrane permeabilization (MOMP) has historically been thought to occur synchronously and completely throughout a cell, leading to rapid caspase activation and apoptosis. Using a new imaging approach, we demonstrate that MOMP is not an all-or-nothing event. Rather, we find that a minority of mitochondria can undergo MOMP in a stress-regulated manner, a phenomenon we term "minority MOMP." Crucially, minority MOMP leads to limited caspase activation, which is insufficient to trigger cell death. Instead, this caspase activity leads to DNA damage that, in turn, promotes genomic instability, cellular transformation, and tumorigenesis. Our data demonstrate that, in contrast to its well-established tumor suppressor function, apoptosis also has oncogenic potential that is regulated by the extent of MOMP. These findings have important implications for oncogenesis following either physiological or therapeutic engagement of apoptosis.


Assuntos
Apoptose/fisiologia , Dano ao DNA , Instabilidade Genômica , Membranas Mitocondriais/fisiologia , Animais , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Western Blotting , Caspases/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p19/deficiência , Inibidor de Quinase Dependente de Ciclina p19/genética , Relação Dose-Resposta a Droga , Embrião de Mamíferos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HCT116 , Células HeLa , Histonas/metabolismo , Humanos , Células MCF-7 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Nitrofenóis/farmacologia , Permeabilidade , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estaurosporina/farmacologia , Sulfonamidas/farmacologia , Fatores de Tempo
4.
Mol Cell ; 47(5): 681-93, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22854598

RESUMO

Biochemical evidence implicates the death-domain (DD) protein PIDD as a molecular switch capable of signaling cell survival or death in response to genotoxic stress. PIDD activity is determined by binding-partner selection at its DD: whereas recruitment of RIP1 triggers prosurvival NF-κB signaling, recruitment of RAIDD activates proapoptotic caspase-2 via PIDDosome formation. However, it remains unclear how interactor selection, and thus fate decision, is regulated at the PIDD platform. We show that the PIDDosome functions in the "Chk1-suppressed" apoptotic response to DNA damage, a conserved ATM/ATR-caspase-2 pathway antagonized by Chk1. In this pathway, ATM phosphorylates PIDD on Thr788 within the DD. This phosphorylation is necessary and sufficient for RAIDD binding and caspase-2 activation. Conversely, nonphosphorylatable PIDD fails to bind RAIDD or activate caspase-2, and engages prosurvival RIP1 instead. Thus, ATM phosphorylation of the PIDD DD enables a binary switch through which cells elect to survive or die upon DNA injury.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteína Adaptadora de Sinalização CRADD/metabolismo , Caspase 2/metabolismo , Morte Celular , Sobrevivência Celular , Células Cultivadas , Dano ao DNA , Células HEK293 , Células HeLa , Humanos , Fosforilação
5.
Mol Cell ; 44(4): 517-31, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22036586

RESUMO

During apoptosis, the BCL-2 protein family controls mitochondrial outer membrane permeabilization (MOMP), but the dynamics of this regulation remain controversial. We employed chimeric proteins composed of exogenous BH3 domains inserted into a tBID backbone that can activate the proapoptotic effectors BAX and BAK to permeabilize membranes without being universally sequestered by all antiapoptotic BCL-2 proteins. We thus identified two "modes" whereby prosurvival BCL-2 proteins can block MOMP, by sequestering direct-activator BH3-only proteins ("MODE 1") or by binding active BAX and BAK ("MODE 2"). Notably, we found that MODE 1 sequestration is less efficient and more easily derepressed to promote MOMP than MODE 2. Further, MODE 2 sequestration prevents mitochondrial fusion. We provide a unified model of BCL-2 family function that helps to explain otherwise paradoxical observations relating to MOMP, apoptosis, and mitochondrial dynamics.


Assuntos
Apoptose , Regulação da Expressão Gênica , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Citocromos c/análise , Células HeLa , Humanos , Mamíferos , Camundongos , Camundongos Knockout , Anotação de Sequência Molecular , Permeabilidade , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência , Transfecção , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
6.
Mol Cell ; 35(6): 830-40, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19782032

RESUMO

Caspase-2 is an initiator caspase activated in response to heat shock and other stressors that induce apoptosis. Activation of caspase-2 requires induced proximity resulting after recruitment to caspase-2 activation complexes such as the PIDDosome. We have adapted bimolecular fluorescence complementation (BiFC) to measure caspase-2 induced proximity in real time in single cells. Nonfluorescent fragments of the fluorescent protein Venus that can associate to reform the fluorescent complex were fused to caspase-2, allowing visualization and kinetic measurements of caspase-2 induced proximity after heat shock and other stresses. This revealed that the caspase-2 activation platform occurred in the cytosol and not in the nucleus in response to heat shock, DNA damage, cytoskeletal disruption, and other treatments. Activation, as measured by this approach, in response to heat shock was RAIDD dependent and upstream of mitochondrial outer-membrane permeabilization. Furthermore, we identify Hsp90alpha as a key negative regulator of heat shock-induced caspase-2 activation.


Assuntos
Apoptose , Caspase 2/metabolismo , Citoplasma/enzimologia , Estresse Fisiológico , Animais , Apoptose/efeitos dos fármacos , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Proteínas de Bactérias/genética , Técnicas Biossensoriais , Proteína Adaptadora de Sinalização CRADD/metabolismo , Caspase 2/genética , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Fatores de Transcrição de Choque Térmico , Temperatura Alta , Humanos , Cinética , Proteínas Luminescentes/genética , Camundongos , Camundongos Knockout , Microscopia Confocal , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutagênese Sítio-Dirigida , Multimerização Proteica , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transfecção , Moduladores de Tubulina/farmacologia
7.
Mol Ther ; 23(9): 1497-506, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26084970

RESUMO

Oncolytic adenoviruses (OAdV) represent a promising strategy for cancer therapy. Despite their activity in preclinical models, to date the clinical efficacy remains confined to minor responses after intratumor injection. To overcome these limitations, we developed an alternative approach using the combination of the OAdv ICOVIR15 with a replication incompetent adenoviral vector carrying the suicide gene of inducible Caspase 9 (Ad.iC9), both of which are delivered by mesenchymal stromal cells (MSCs). We hypothesized that coinfection with ICOVIR15 and Ad.iC9 would allow MSCs to replicate both vectors and deliver two distinct types of antitumor therapy to the tumor, amplifying the cytotoxic effects of the two viruses, in a non-small-cell lung cancer (NSCLC) model. We showed that MSCs can replicate and release both vectors, enabling significant transduction of the iC9 gene in tumor cells. In the in vivo model using human NSCLC xenografts, MSCs homed to lung tumors where they released both viruses. The activation of iC9 by the chemical inducer of dimerization (CID) significantly enhanced the antitumor activity of the ICOVIR15, increasing the tumor control and translating into improved overall survival of tumor-bearing mice. These data support the use of this innovative approach for the treatment of NSCLC.


Assuntos
Adenoviridae/genética , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Terapia Genética , Vetores Genéticos/genética , Neoplasias Pulmonares/genética , Células-Tronco Mesenquimais/metabolismo , Terapia Viral Oncolítica , Animais , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Caspase 9/genética , Caspase 9/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Expressão Gênica , Técnicas de Transferência de Genes , Genes Reporter , Genes Transgênicos Suicidas , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Injeções Intralesionais , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Transplante de Células-Tronco Mesenquimais , Camundongos , Terapia Viral Oncolítica/métodos , Proteínas Recombinantes de Fusão/genética , Proteína 1A de Ligação a Tacrolimo/genética , Transdução Genética , Transgenes , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Adv Protein Chem Struct Biol ; 135: 203-241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37061332

RESUMO

The nucleolus has long been perceived as the site for ribosome biogenesis, but numerous studies suggest that the nucleolus carefully sequesters crucial proteins involved in multiple cellular functions. Among these, the role of nucleolus in cell cycle regulation is the most evident. The nucleolus is the first responder of growth-related signals to mediate normal cell cycle progression. The nucleolus also senses different cellular stress insults by activating diverse pathways that arrest the cell cycle, promote DNA repair, or initiate apoptosis. Here, we review the emerging concepts on how the ribosomal and nonribosomal nucleolar proteins mediate such cellular effects.


Assuntos
Ribossomos , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ciclo Celular , Ribossomos/genética , Ribossomos/metabolismo , Proteínas Nucleares/metabolismo , Dano ao DNA
9.
Transl Res ; 252: 34-44, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36041706

RESUMO

Overactive inflammatory responses are central to the pathophysiology of many hemolytic conditions including sickle cell disease. Excessive hemolysis leads to elevated serum levels of heme due to saturation of heme scavenging mechanisms. Extracellular heme has been shown to activate the NLRP3 inflammasome, leading to activation of caspase-1 and release of pro-inflammatory cytokines IL-1ß and IL-18. Heme also activates the non-canonical inflammasome pathway, which may contribute to NLRP3 inflammasome formation and leads to pyroptosis, a type of inflammatory cell death. Some clinical studies indicate there is a benefit to blocking the NLRP3 inflammasome pathway in patients with sickle cell disease and other hemolytic conditions. However, a thorough understanding of the mechanisms of heme-induced inflammasome activation is needed to fully leverage this pathway for clinical benefit. This review will explore the mechanisms of heme-induced NLRP3 inflammasome activation and the role of this pathway in hemolytic conditions including sickle cell disease.


Assuntos
Anemia Falciforme , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Heme/metabolismo , Hemólise , Inflamação/metabolismo , Anemia Falciforme/complicações , Interleucina-1beta
10.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398413

RESUMO

Mutation in nucleophosmin (NPM1) causes relocalization of this normally nucleolar protein to the cytoplasm ( NPM1c+ ). Despite NPM1 mutation being the most common driver mutation in cytogenetically normal adult acute myeloid leukemia (AML), the mechanisms of NPM1c+-induced leukemogenesis remain unclear. Caspase-2 is a pro-apoptotic protein activated by NPM1 in the nucleolus. Here, we show that caspase-2 is also activated by NPM1c+ in the cytoplasm, and DNA damage-induced apoptosis is caspase-2-dependent in NPM1c+ AML but not in NPM1wt cells. Strikingly, in NPM1c+ cells, loss of caspase-2 results in profound cell cycle arrest, differentiation, and down-regulation of stem cell pathways that regulate pluripotency including impairment in the AKT/mTORC1 and Wnt signaling pathways. In contrast, there were minimal differences in proliferation, differentiation, or the transcriptional profile of NPM1wt cells with and without caspase-2. Together, these results show that caspase-2 is essential for proliferation and self-renewal of AML cells that have mutated NPM1. This study demonstrates that caspase-2 is a major effector of NPM1c+ function and may even be a druggable target to treat NPM1c+ AML and prevent relapse.

11.
J Vis Exp ; (182)2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35467667

RESUMO

Inflammatory caspases include caspase-1, -4, -5, -11, and -12 and belong to the subgroup of initiator caspases. Caspase-1 is required to ensure correct regulation of inflammatory signaling and is activated by proximity-induced dimerization following recruitment to inflammasomes. Caspase-1 is abundant in the monocytic cell lineage and induces maturation of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-18 to active secreted molecules. The other inflammatory caspases, caspase-4 and -5 (and their murine homolog caspase-11) promote IL-1ß release by inducing pyroptosis. Caspase Bimolecular Fluorescence Complementation (BiFC) is a tool used to measure inflammatory caspase induced proximity as a readout of caspase activation. The caspase-1, -4, or -5 prodomain, which contains the region that binds to the inflammasome, is fused to non-fluorescent fragments of the yellow fluorescent protein Venus (Venus-N [VN] or Venus-C [VC]) that associate to reform the fluorescent Venus complex when the caspases undergo induced proximity. This protocol describes how to introduce these reporters into primary human monocyte-derived macrophages (MDM) using nucleofection, treat the cells to induce inflammatory caspase activation, and measure caspase activation using fluorescence and confocal microscopy. The advantage of this approach is that it can be used to identify the components, requirements, and localization of the inflammatory caspase activation complex in living cells. However, careful controls need to be considered to avoid compromising cell viability and behavior. This technique is a powerful tool for the analysis of dynamic caspase interactions at the inflammasome level as well as for the interrogation of the inflammatory signaling cascades in living MDM and monocytes derived from human blood samples.


Assuntos
Caspases , Inflamassomos , Animais , Caspases/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Microscopia Confocal , Piroptose
12.
Cells ; 11(12)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35741016

RESUMO

Members of the caspase family are well known for their roles in the initiation and execution of cell death. Due to their function in the removal of damaged cells that could otherwise become malignant, caspases are important players in the DNA damage response (DDR), a network of pathways that prevent genomic instability. However, emerging evidence of caspases positively or negatively impacting the accumulation of DNA damage in the absence of cell death demonstrates that caspases play a role in the DDR that is independent of their role in apoptosis. This review highlights the apoptotic and non-apoptotic roles of caspases in the DDR and how they can impact genomic stability and cancer treatment.


Assuntos
Apoptose , Caspases , Apoptose/fisiologia , Caspases/metabolismo , Morte Celular , Dano ao DNA , Instabilidade Genômica , Humanos
13.
FEBS J ; 289(11): 3097-3100, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35043564

RESUMO

zVAD-fmk is a widely used pan-caspase inhibitor that blocks apoptosis but has undesirable side effects, including autophagy. In this issue, Needs et al. propose that zVAD-fmk induces autophagy by inhibiting the N-glycanase NGLY1 rather than caspases. NGLY1 is essential for the ERAD response and patients with inactivating mutations in NGLY1 present with neurodevelopmental defects and organ dysfunction. The ability of NGLY1 to inhibit basal levels of autophagy may contribute to this pathology. This study demonstrates possible crosstalk between protein turnover and autophagy while also underscoring the importance of specificity when using chemical tools to interrogate these pathways. Comment on https://doi.org/10.1111/febs.16345.


Assuntos
Autofagia , Caspases , Clorometilcetonas de Aminoácidos/farmacologia , Apoptose , Caspase 3 , Inibidores de Caspase/farmacologia , Caspases/genética , Caspases/metabolismo , Humanos
14.
Oncogene ; 41(2): 204-219, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718349

RESUMO

In addition to its classical role in apoptosis, accumulating evidence suggests that caspase-2 has non-apoptotic functions, including regulation of cell division. Loss of caspase-2 is known to increase proliferation rates but how caspase-2 is regulating this process is currently unclear. We show that caspase-2 is activated in dividing cells in G1-phase of the cell cycle. In the absence of caspase-2, cells exhibit numerous S-phase defects including delayed exit from S-phase, defects in repair of chromosomal aberrations during S-phase, and increased DNA damage following S-phase arrest. In addition, caspase-2-deficient cells have a higher frequency of stalled replication forks, decreased DNA fiber length, and impeded progression of DNA replication tracts. This indicates that caspase-2 protects from replication stress and promotes replication fork protection to maintain genomic stability. These functions are independent of the pro-apoptotic function of caspase-2 because blocking caspase-2-induced cell death had no effect on cell division, DNA damage-induced cell cycle arrest, or DNA damage. Thus, our data supports a model where caspase-2 regulates cell cycle and DNA repair events to protect from the accumulation of DNA damage independently of its pro-apoptotic function.


Assuntos
Caspase 2/genética , Ciclo Celular/genética , Dano ao DNA/genética , Animais , Apoptose , Humanos , Camundongos
15.
J Cell Mol Med ; 14(6A): 1212-24, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20158568

RESUMO

Caspase-2 is the most evolutionarily conserved of all the caspases, yet it has a poorly defined role in apoptotic pathways. This is mainly due to a dearth of techniques to determine the activation status of caspase-2 and the lack of an abnormal phenotype in caspase-2 deficient mice. Nevertheless, emerging evidence suggests that caspase-2 may have important functions in a number of stress-induced cell death pathways, in cell cycle maintenance and regulation of tumour progression. This review discusses recent advances that have been made to help elucidate the true role of this elusive caspase and the potential contribution of caspase-2 to the pathology of human diseases including cancer.


Assuntos
Apoptose , Caspase 2/metabolismo , Estresse Fisiológico , Animais , Doença , Ativação Enzimática , Humanos
16.
Biochim Biophys Acta Mol Cell Res ; 1867(6): 118688, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32087180

RESUMO

Members of the caspase family of proteases play essential roles in the initiation and execution of apoptosis. These caspases are divided into two groups: the initiator caspases (caspase-2, -8, -9 and -10), which are the first to be activated in response to a signal, and the executioner caspases (caspase-3, -6, and -7) that carry out the demolition phase of apoptosis. Many conventional cancer therapies induce apoptosis to remove the cancer cell by engaging these caspases indirectly. Newer therapeutic applications have been designed, including those that specifically activate individual caspases using gene therapy approaches and small molecules that repress natural inhibitors of caspases already present in the cell. For such approaches to have maximal clinical efficacy, emerging insights into non-apoptotic roles of these caspases need to be considered. This review will discuss the roles of caspases as safeguards against cancer in the context of the advantages and potential limitations of targeting apoptotic caspases for the treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Caspases/metabolismo , Neoplasias/enzimologia , Antineoplásicos/uso terapêutico , Apoptose , Caspases/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
17.
Front Cell Dev Biol ; 8: 610022, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425918

RESUMO

Caspase-2 belongs to the caspase family of proteins responsible for essential cellular functions including apoptosis and inflammation. Uniquely, caspase-2 has been identified as a tumor suppressor, but how it regulates this function is still unknown. For many years, caspase-2 has been considered an "orphan" caspase because, although it is able to induce apoptosis, there is an abundance of conflicting evidence that questions its necessity for apoptosis. Recent evidence supports that caspase-2 has non-apoptotic functions in the cell cycle and protection from genomic instability. It is unclear how caspase-2 regulates these opposing functions, which has made the mechanism of tumor suppression by caspase-2 difficult to determine. As a protease, caspase-2 likely exerts its functions by proteolytic cleavage of cellular substrates. This review highlights the known substrates of caspase-2 with a special focus on their functional relevance to caspase-2's role as a tumor suppressor.

18.
Methods Mol Biol ; 559: 33-48, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19609747

RESUMO

Live cell imaging allows several key apoptotic events to be visualized in a single cell over time. These include mitochondrial outer membrane permeabilization (MOMP), mitochondrial dysfunction, phosphatidylserine exposure, and membrane permeabilization. Here we describe a protocol for imaging multiple apoptotic processes in the same cell over time. Initially, this involves generating a cell line stably expressing a fluorescent fusion protein that can act as an apoptotic marker, such as cytochrome c-GFP. By combining various fluorescent fusion proteins and probes, several apoptotic events can be imaged in the same cell. Next, the cells are induced to undergo apoptosis and continuously imaged. Finally, quantitative kinetic analysis of various apoptotic processes is performed postimaging.


Assuntos
Apoptose , Técnicas Citológicas , Microscopia Confocal/métodos , Animais , Proteínas Reguladoras de Apoptose/análise , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Citocromos c/análise , Citocromos c/genética , Citocromos c/metabolismo , Fluorescência , Humanos , Cinética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/análise , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
19.
Mol Biol Cell ; 17(5): 2150-7, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16495337

RESUMO

The mechanisms through which Caspase-2 leads to cell death are controversial. Here we show, using a combination of cell-free and cell culture-based approaches, that cleavage of the Bcl-2-family protein Bid is required for the induction of apoptosis by Caspase-2. Caspase-2 promoted cytochrome c release from mitochondria in the presence of cytosol from wild-type, but not Bid-deficient, mouse embryonic fibroblasts (MEFs). Recombinant wild-type Bid, but not a noncleavable mutant (D59E), restored cytochrome c release. Similarly, Bid-null MEFs were relatively resistant to apoptosis triggered by active Caspase-2, and apoptosis was restored in Bid-null cells by the expression of wild-type, but not D59E, Bid. Finally, Bid-null MEFs were substantially more resistant to apoptosis induced by heat shock, which has been shown to be dependent on apical activation of Caspase-2. The data are consistent with a model in which Caspase-2 induces apoptosis via cleavage of Bid at D59 and the subsequent engagement of the mitochondrial (intrinsic) pathway.


Assuntos
Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Caspases/metabolismo , Temperatura Alta , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Caspase 2 , Células Cultivadas , Citocromos c/metabolismo , Citosol/metabolismo , Embrião de Mamíferos/citologia , Ativação Enzimática , Fibroblastos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mutação
20.
FEBS J ; 286(14): 2628-2644, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31090171

RESUMO

Members of the mammalian inflammatory caspase family, including caspase-1, caspase-4, caspase-5, caspase-11, and caspase-12, are key regulators of the innate immune response. Most studies to date have focused on the role of caspase-1 in the maturation of the proinflammatory cytokine interleukin-1ß and its upstream regulation by the inflammasome signaling complexes. However, an emerging body of research has supported a role for caspase-4, caspase-5, and caspase-11 in both regulating caspase-1 activation and inducing the inflammatory form of cell death called pyroptosis. This inflammatory caspase pathway appears essential for the regulation of cytokine processing. Consequently, insight into this noncanonical pathway may reveal important and, to date, understudied targets for the treatment of autoinflammatory disorders where the inflammasome pathway is dysregulated. Here, we will discuss the mechanisms of inflammasome and inflammatory caspase activation and how these pathways intersect to promote pathogen clearance.


Assuntos
Caspases/fisiologia , Inflamação/etiologia , Animais , Morte Celular , Citocinas/fisiologia , Humanos , Inflamassomos/fisiologia , Piroptose , Sepse/etiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA