Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nano Lett ; 18(10): 6326-6333, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30232897

RESUMO

In vivo, immune cells migrate through a wide variety of tissues, including confined and constricting environments. Deciphering how cells apply forces when infiltrating narrow areas is a critical issue that requires innovative experimental procedures. To reveal the distribution and dynamics of the forces of cells migrating in confined environments, we designed a device combining microchannels of controlled dimensions with integrated deformable micropillars serving as sensors of nanoscale subcellular forces. First, a specific process composed of two steps of photolithography and dry etching was tuned to obtain micrometric pillars of controlled stiffness and dimensions inside microchannels. Second, an image-analysis workflow was developed to automatically evaluate the amplitude and direction of the forces applied on the micropillars by migrating cells. Using this workflow, we show that this microdevice is a sensor of forces with a limit of detection down to 64 pN. Third, by recording pillar movements during the migration of macrophages inside the confining microchannels, we reveal that macrophages bent the pillars with typical forces of 0.3 nN and applied higher forces at the cell edges than around their nuclei. When the degree of confinement was increased, we found that forces were redirected from inward to outward. By providing a microdevice that allows the analysis of force direction and force magnitude developed by confined cells, our work paves the way for investigating the mechanical behavior of cells migrating though 3D constricted environments.


Assuntos
Técnicas de Cultura de Células , Núcleo Celular/química , Dispositivos Lab-On-A-Chip , Macrófagos/química , Técnicas Biossensoriais/métodos , Adesão Celular/genética , Movimento Celular/genética , Núcleo Celular/genética , Microambiente Celular/genética , Voluntários Saudáveis , Humanos , Fenômenos Mecânicos , Monócitos/química
2.
EMBO J ; 33(2): 114-28, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24421324

RESUMO

γ-Tubulin is critical for microtubule (MT) assembly and organization. In metazoa, this protein acts in multiprotein complexes called γ-Tubulin Ring Complexes (γ-TuRCs). While the subunits that constitute γ-Tubulin Small Complexes (γ-TuSCs), the core of the MT nucleation machinery, are essential, mutation of γ-TuRC-specific proteins in Drosophila causes sterility and morphological abnormalities via hitherto unidentified mechanisms. Here, we demonstrate a role of γ-TuRCs in controlling spindle orientation independent of MT nucleation activity, both in cultured cells and in vivo, and examine a potential function for γ-TuRCs on astral MTs. γ-TuRCs locate along the length of astral MTs, and depletion of γ-TuRC-specific proteins increases MT dynamics and causes the plus-end tracking protein EB1 to redistribute along MTs. Moreover, suppression of MT dynamics through drug treatment or EB1 down-regulation rescues spindle orientation defects induced by γ-TuRC depletion. Therefore, we propose a role for γ-TuRCs in regulating spindle positioning by controlling the stability of astral MTs.


Assuntos
Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Fuso Acromático/fisiologia , Tubulina (Proteína)/fisiologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Drosophila , Células HeLa , Humanos , Complexos Multiproteicos/fisiologia
3.
Methods ; 94: 75-84, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26342257

RESUMO

Podosomes are submicron adhesive and mechanosensitive structures formed by macrophages, dendritic cells and osteoclasts that are capable of protruding into the extracellular environment. Built of an F-actin core surrounded by an adhesion ring, podosomes assemble in a network interconnected by acto-myosin cables. They have been shown to display spatiotemporal instability as well as protrusion force oscillations. To analyse the entire population of these unstable structures, we have designed an automated multi-particle tracking adapted to both topographical and fluorescence data. Here we describe in detail this approach and report the measurements of individual and collective characteristics of podosome ensembles, providing an integrated picture of their activity from the complementary angles of organisation, dynamics, mobility and mechanics. We believe that this will lead to a comprehensive view of podosome collective behaviour and deepen our knowledge about the significance of mechanosensing mediated by protrusive structures.


Assuntos
Macrófagos/fisiologia , Podossomos/fisiologia , Células Cultivadas , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Macrófagos/ultraestrutura , Microscopia de Força Atômica , Microscopia de Fluorescência , Podossomos/ultraestrutura
4.
Nat Commun ; 13(1): 3842, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35789161

RESUMO

Actin filaments assemble into force-generating systems involved in diverse cellular functions, including cell motility, adhesion, contractility and division. It remains unclear how networks of actin filaments, which individually generate piconewton forces, can produce forces reaching tens of nanonewtons. Here we use in situ cryo-electron tomography to unveil how the nanoscale architecture of macrophage podosomes enables basal membrane protrusion. We show that the sum of the actin polymerization forces at the membrane is not sufficient to explain podosome protrusive forces. Quantitative analysis of podosome organization demonstrates that the core is composed of a dense network of bent actin filaments storing elastic energy. Theoretical modelling of the network as a spring-loaded elastic material reveals that it exerts forces of a few tens of nanonewtons, in a range similar to that evaluated experimentally. Thus, taking into account not only the interface with the membrane but also the bulk of the network, is crucial to understand force generation by actin machineries. Our integrative approach sheds light on the elastic behavior of dense actin networks and opens new avenues to understand force production inside cells.


Assuntos
Podossomos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Movimento Celular , Elasticidade , Podossomos/metabolismo
5.
Cell Rep Methods ; 1(1): 100009, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35474693

RESUMO

Current super-resolution microscopy (SRM) methods suffer from an intrinsic complexity that might curtail their routine use in cell biology. We describe here random illumination microscopy (RIM) for live-cell imaging at super-resolutions matching that of 3D structured illumination microscopy, in a robust fashion. Based on speckled illumination and statistical image reconstruction, easy to implement and user-friendly, RIM is unaffected by optical aberrations on the excitation side, linear to brightness, and compatible with multicolor live-cell imaging over extended periods of time. We illustrate the potential of RIM on diverse biological applications, from the mobility of proliferating cell nuclear antigen (PCNA) in U2OS cells and kinetochore dynamics in mitotic S. pombe cells to the 3D motion of myosin minifilaments deep inside Drosophila tissues. RIM's inherent simplicity and extended biological applicability, particularly for imaging at increased depths, could help make SRM accessible to biology laboratories.


Assuntos
Processamento de Imagem Assistida por Computador , Iluminação , Animais , Microscopia de Fluorescência/métodos , Drosophila
6.
Nat Commun ; 9(1): 515, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410425

RESUMO

Subcellular fine-tuning of the actomyosin cytoskeleton is a prerequisite for polarized cell migration. We identify LSP (lymphocyte-specific protein) 1 as a critical regulator of actomyosin contractility in primary macrophages. LSP1 regulates adhesion and migration, including the parameters cell area and speed, and also podosome turnover, oscillation and protrusive force. LSP1 recruits myosin IIA and its regulators, including myosin light chain kinase and calmodulin, and competes with supervillin, a myosin hyperactivator, for myosin regulators, and for actin isoforms, notably ß-actin. Actin isoforms are anisotropically distributed in myosin IIA-expressing macrophages, and contribute to the differential recruitment of LSP1 and supervillin, thus enabling an actomyosin symmetry break, analogous to the situation in cells expressing two myosin II isoforms. Collectively, these results show that the cellular pattern of actin isoforms builds the basis for the differential distribution of two actomyosin machineries with distinct properties, leading to the establishment of discrete zones of actomyosin contractility.


Assuntos
Actinas/metabolismo , Actomiosina/metabolismo , Macrófagos/metabolismo , Mecanotransdução Celular/fisiologia , Proteínas dos Microfilamentos/metabolismo , Podossomos/fisiologia , Actomiosina/química , Regulação da Expressão Gênica/fisiologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/genética , Miosina não Muscular Tipo IIA/metabolismo , Conformação Proteica , Isoformas de Proteínas
7.
J Vis Exp ; (136)2018 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-29985327

RESUMO

In numerous biological contexts, animal cells need to interact physically with their environment by developing mechanical forces. Among these, traction forces have been well-characterized, but there is a lack of techniques allowing the measurement of the protrusion forces exerted by cells orthogonally to their substrate. We designed an experimental setup to measure the protrusion forces exerted by adherent cells on their substrate. Cells plated on a compliant Formvar sheet deform this substrate and the resulting topography is mapped by atomic force microscopy (AFM) at the nanometer scale. Force values are then extracted from an analysis of the deformation profile based on the geometry of the protrusive cellular structures. Hence, the forces exerted by the individual protruding units of a living cell can be measured over time. This technique will enable the study of force generation and its regulation in the many cellular processes involving protrusion. Here, we describe its application to measure the protrusive forces generated by podosomes formed by human macrophages.


Assuntos
Fenômenos Fisiológicos Celulares/fisiologia , Macrófagos/fisiologia , Microscopia de Força Atômica/métodos , Podossomos/fisiologia , Animais , Humanos
8.
ACS Nano ; 11(4): 4028-4040, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28355484

RESUMO

Determining how cells generate and transduce mechanical forces at the nanoscale is a major technical challenge for the understanding of numerous physiological and pathological processes. Podosomes are submicrometer cell structures with a columnar F-actin core surrounded by a ring of adhesion proteins, which possess the singular ability to protrude into and probe the extracellular matrix. Using protrusion force microscopy, we have previously shown that single podosomes produce local nanoscale protrusions on the extracellular environment. However, how cellular forces are distributed to allow this protruding mechanism is still unknown. To investigate the molecular machinery of protrusion force generation, we performed mechanical simulations and developed quantitative image analyses of nanoscale architectural and mechanical measurements. First, in silico modeling showed that the deformations of the substrate made by podosomes require protrusion forces to be balanced by local traction forces at the immediate core periphery where the adhesion ring is located. Second, we showed that three-ring proteins are required for actin polymerization and protrusion force generation. Third, using DONALD, a 3D nanoscopy technique that provides 20 nm isotropic localization precision, we related force generation to the molecular extension of talin within the podosome ring, which requires vinculin and paxillin, indicating that the ring sustains mechanical tension. Our work demonstrates that the ring is a site of tension, balancing protrusion at the core. This local coupling of opposing forces forms the basis of protrusion and reveals the podosome as a nanoscale autonomous force generator.


Assuntos
Podossomos/química , Actinas/química , Actinas/metabolismo , Fenômenos Biomecânicos , Adesão Celular , Células Cultivadas , Simulação por Computador , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Mecanotransdução Celular , Monócitos/citologia , Monócitos/metabolismo , Nanoestruturas/química , Tamanho da Partícula , Paxilina/química , Paxilina/metabolismo , Podossomos/ultraestrutura , Propriedades de Superfície , Talina/química , Talina/metabolismo , Vinculina/química , Vinculina/metabolismo
9.
ACS Nano ; 9(4): 3800-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25791988

RESUMO

Podosomes are mechanosensitive adhesion cell structures that are capable of applying protrusive forces onto the extracellular environment. We have recently developed a method dedicated to the evaluation of the nanoscale forces that podosomes generate to protrude into the extracellular matrix. It consists in measuring by atomic force microscopy (AFM) the nanometer deformations produced by macrophages on a compliant Formvar membrane and has been called protrusion force microscopy (PFM). Here we perform time-lapse PFM experiments and investigate spatial correlations of force dynamics between podosome pairs. We use an automated procedure based on finite element simulations that extends the analysis of PFM experimental data to take into account podosome architecture and organization. We show that protrusion force varies in a synchronous manner for podosome first neighbors, a result that correlates with phase synchrony of core F-actin temporal oscillations. This dynamic spatial coordination between podosomes suggests a short-range interaction that regulates their mechanical activity.


Assuntos
Actinas/metabolismo , Fenômenos Mecânicos , Podossomos/metabolismo , Actinas/química , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Macrófagos/citologia , Microscopia de Força Atômica , Modelos Moleculares , Monócitos/citologia , Conformação Proteica
10.
Nat Commun ; 5: 5343, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25385672

RESUMO

Podosomes are adhesion structures formed in monocyte-derived cells. They are F-actin-rich columns perpendicular to the substrate surrounded by a ring of integrins. Here, to measure podosome protrusive forces, we designed an innovative experimental setup named protrusion force microscopy (PFM), which consists in measuring by atomic force microscopy the deformation induced by living cells onto a compliant Formvar sheet. By quantifying the heights of protrusions made by podosomes onto Formvar sheets, we estimate that a single podosome generates a protrusion force that increases with the stiffness of the substratum, which is a hallmark of mechanosensing activity. We show that the protrusive force generated at podosomes oscillates with a constant period and requires combined actomyosin contraction and actin polymerization. Finally, we elaborate a model to explain the mechanical and oscillatory activities of podosomes. Thus, PFM shows that podosomes are mechanosensing cell structures exerting a protrusive force.


Assuntos
Relógios Biológicos/fisiologia , Macrófagos/fisiologia , Mecanotransdução Celular/fisiologia , Microscopia de Força Atômica/métodos , Podossomos/fisiologia , Actinas/fisiologia , Actinas/ultraestrutura , Extensões da Superfície Celular/fisiologia , Extensões da Superfície Celular/ultraestrutura , Células Cultivadas , Humanos , Macrófagos/citologia , Macrófagos/ultraestrutura , Microscopia Eletrônica de Varredura , Modelos Biológicos , Simulação de Dinâmica Molecular , Podossomos/ultraestrutura
11.
Biol Open ; 2(3): 314-23, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23519377

RESUMO

In animal cells the centrosome is commonly viewed as the main cellular structure driving microtubule (MT) assembly into the mitotic spindle apparatus. However, additional pathways, such as those mediated by chromatin and augmin, are involved in the establishment of functional spindles. The molecular mechanisms involved in these pathways remain poorly understood, mostly due to limitations inherent to current experimental systems available. To overcome these limitations we have developed six new Drosophila cell lines derived from Drosophila homozygous mutants for DSas-4, a protein essential for centriole biogenesis. These cells lack detectable centrosomal structures, astral MT, with dispersed pericentriolar proteins D-PLP, Centrosomin and γ-tubulin. They show poorly focused spindle poles that reach the plasma membrane. Despite being compromised for functional centrosome, these cells could successfully undergo mitosis. Live-cell imaging analysis of acentriolar spindle assembly revealed that nascent MTs are nucleated from multiple points in the vicinity of chromosomes. These nascent MTs then grow away from kinetochores allowing the expansion of fibers that will be part of the future acentriolar spindle. MT repolymerization assays illustrate that acentriolar spindle assembly occurs "inside-out" from the chromosomes. Colchicine-mediated depolymerization of MTs further revealed the presence of a functional Spindle Assembly Checkpoint (SAC) in the acentriolar cells. Finally, pilot RNAi experiments open the potential use of these cell lines for the molecular dissection of anastral pathways in spindle and centrosome assembly.

12.
Int J Biochem Cell Biol ; 44(2): 266-74, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22108200

RESUMO

Microtubules are hollow tubes essential for many cellular functions such as cell polarization and migration, intracellular trafficking and cell division. They are polarized polymers composed of α and ß tubulin that are, in most cells, nucleated at the centrosome at the center of the cell. Microtubule plus-ends are oriented towards the periphery of the cell and explore the cytoplasm in a very dynamic manner. Microtubule alternate between phases of growth and shrinkage in a manner described as dynamic instability. Their dynamics is highly regulated by multiple factors: tubulin post-translational modifications such as detyrosination or acetylation, and microtubule-associated proteins, among them the plus-tip tracking proteins. This regulation is necessary for microtubule functions in the cell. In this review, we will focus on the role of microtubules in intracellular organization. After an overview of the mechanisms responsible for the regulation of microtubule dynamics, the major roles of microtubules dynamics in organelle positioning and organization in interphase cells will be discussed. Conversely, the role of certain organelles, like the nucleus and the Golgi apparatus as microtubule organizing centers will be reviewed. We will then consider the role of microtubules in the establishment and maintenance of cell polarity using few examples of cell polarization: epithelial cells, neurons and migrating cells. In these cells, the microtubule network is reorganized and undergoes specific and local regulation events; microtubules also participate in the intracellular reorganization of different organelles to ensure proper cell differentiation.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/fisiologia , Tubulina (Proteína)/metabolismo , Animais , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Centrossomo/metabolismo , Humanos , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Organelas/metabolismo , Organelas/fisiologia , Tubulina (Proteína)/química
13.
J Cell Biol ; 187(3): 327-34, 2009 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-19948476

RESUMO

gamma-Tubulin is critical for the initiation and regulation of microtubule (MT) assembly. In Drosophila melanogaster, it acts within two main complexes: the gamma-tubulin small complex (gamma-TuSC) and the gamma-tubulin ring complex (gamma-TuRC). Proteins specific of the gamma-TuRC, although nonessential for viability, are required for efficient mitotic progression. Until now, their role during interphase remained poorly understood. Using RNA interference in Drosophila S2 cells, we show that the gamma-TuRC is not critical for overall MT organization. However, depletion of any component of this complex results in an increase of MT dynamics. Combined immunofluorescence and live imaging analysis allows us to reveal that the gamma-TuRC localizes along interphase MTs and that distal gamma-tubulin spots match with sites of pause or rescue events. We propose that, in addition to its role in nucleation, the gamma-TuRC associated to MTs may regulate their dynamics by limiting catastrophes.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Células Cultivadas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Interfase , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Tubulina (Proteína)/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA