Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 611(7937): 794-800, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36323785

RESUMO

Protective immunity relies on the interplay of innate and adaptive immune cells with complementary and redundant functions. Innate lymphoid cells (ILCs) have recently emerged as tissue-resident, innate mirror images of the T cell system, with which they share lineage-specifying transcription factors and effector machinery1. Located at barrier surfaces, ILCs are among the first responders against invading pathogens and thus could potentially determine the outcome of the immune response2. However, so far it has not been possible to dissect the unique contributions of ILCs to protective immunity owing to limitations in specific targeting of ILC subsets. Thus, all of the available data have been generated either in mice lacking the adaptive immune system or with tools that also affect other immune cell subsets. In addition, it has been proposed that ILCs might be dispensable for a proper immune response because other immune cells could compensate for their absence3-7. Here we report the generation of a mouse model based on the neuromedin U receptor 1 (Nmur1) promoter as a driver for simultaneous expression of Cre recombinase and green fluorescent protein, which enables gene targeting in group 2 ILCs (ILC2s) without affecting other innate and adaptive immune cells. Using Cre-mediated gene deletion of Id2 and Gata3 in Nmur1-expressing cells, we generated mice with a selective and specific deficiency in ILC2s. ILC2-deficient mice have decreased eosinophil counts at steady state and are unable to recruit eosinophils to the airways in models of allergic asthma. Further, ILC2-deficient mice do not mount an appropriate immune and epithelial type 2 response, resulting in a profound defect in worm expulsion and a non-protective type 3 immune response. In total, our data establish non-redundant functions for ILC2s in the presence of adaptive immune cells at steady state and during disease and argue for a multilayered organization of the immune system on the basis of a spatiotemporal division of labour.


Assuntos
Sistema Imunitário , Imunidade Inata , Linfócitos , Animais , Camundongos , Asma/genética , Asma/imunologia , Asma/patologia , Modelos Animais de Doenças , Eosinófilos/patologia , Imunidade Inata/imunologia , Linfócitos/classificação , Linfócitos/imunologia , Proteínas de Fluorescência Verde , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/patologia
2.
Sci Rep ; 10(1): 8670, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457323

RESUMO

Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine, involved in Alzheimer's disease pathogenesis. Anti-TNF-α therapeutic approaches currently used in autoimmune diseases have been proposed as a therapeutic strategy in AD. We have previously examined the role of TNF-α and anti-TNF-α drugs in AD, using 5XFAD mice, and we have found a significant role for peripheral TNF-α in brain inflammation. Here we investigated the role of mouse TNF-α on the AD-like phenotype of 5XFAD mice using a knock-in mouse with deletion of the 3'UTR of the endogenous TNF-α (TNFΔARE/+) that develops rheumatoid arthritis and Crohn's disease. 5XFAD/TNFΔARE/+ mice showed significantly decreased amyloid deposition. Interestingly, microglia but not astrocytes were activated in 5XFAD/ TNFΔARE/+ brains. This microglial activation was associated with increased infiltrating peripheral leukocytes and perivascular macrophages and synaptic degeneration. APP levels and APP processing enzymes involved in Aß production remained unchanged, suggesting that the reduced amyloid burden can be attributed to the increased microglial and perivascular macrophage activation caused by TNF-α. Peripheral TNF-α levels were increased while brain TNF-α remained the same. These data provide further evidence for peripheral TNF-α as a mediator of inflammation between the periphery and the brain.


Assuntos
Regiões 3' não Traduzidas/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/patologia , Fator de Necrose Tumoral alfa/genética , Doença de Alzheimer/genética , Animais , Artrite Reumatoide/genética , Encéfalo/patologia , Doença de Crohn/genética , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA