RESUMO
BACKGROUND: Surgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours eventually recur. Multimodal treatment plans combining intraoperative techniques that maximise tumour excision with therapies aiming to remodel the immunologically cold GBM microenvironment could improve patients' outcomes. Herein, we report that targeted photoimmunotherapy (PIT) not only helps to define tumour location and margins but additionally promotes activation of anti-GBM T cell response. METHODS: EGFR-specific affibody molecule (ZEGFR:03115) was conjugated to IR700. The response to ZEGFR:03115-IR700-PIT was investigated in vitro and in vivo in GBM cell lines and xenograft model. To determine the tumour-specific immune response post-PIT, a syngeneic GBM model was used. RESULTS: In vitro findings confirmed the ability of ZEGFR:03115-IR700 to produce reactive oxygen species upon light irradiation. ZEGFR:03115-IR700-PIT promoted immunogenic cell death that triggered the release of damage-associated molecular patterns (DAMPs) (calreticulin, ATP, HSP70/90, and HMGB1) into the medium, leading to dendritic cell maturation. In vivo, therapeutic response to light-activated conjugate was observed in brain tumours as early as 1 h post-irradiation. Staining of the brain sections showed reduced cell proliferation, tumour necrosis, and microhaemorrhage within PIT-treated tumours that corroborated MRI T2*w acquisitions. Additionally, enhanced immunological response post-PIT resulted in the attraction and activation of T cells in mice bearing murine GBM brain tumours. CONCLUSIONS: Our data underline the potential of ZEGFR:03115-IR700 to accurately visualise EGFR-positive brain tumours and to destroy tumour cells post-conjugate irradiation turning an immunosuppressive tumour environment into an immune-vulnerable one.
Assuntos
Glioblastoma , Animais , Autoanticorpos , Linhagem Celular Tumoral , Receptores ErbB , Glioblastoma/terapia , Humanos , Imunidade , Imunoterapia , Camundongos , Recidiva Local de Neoplasia , Fármacos Fotossensibilizantes , Microambiente Tumoral , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Glioblastomas (GBMs) are high-grade brain tumors, differentially driven by alterations (amplification, deletion or missense mutations) in the epidermal growth factor receptor (EGFR), that carry a poor prognosis of just 12-15 months following standard therapy. A combination of interventions targeting tumor-specific cell surface regulators along with convergent downstream signaling pathways may enhance treatment efficacy. Against this background, we investigated a novel photoimmunotherapy approach combining the cytotoxicity of photodynamic therapy with the specificity of immunotherapy. An EGFR-specific affibody (ZEGFR:03115 ) was conjugated to the phthalocyanine dye, IR700DX, which when excited with near-infrared light produces a cytotoxic response. ZEGFR:03115 -IR700DX EGFR-specific binding was confirmed by flow cytometry and confocal microscopy. The conjugate showed effective targeting of EGFR positive GBM cells in the brain. The therapeutic potential of the conjugate was assessed both in vitro, in GBM cell lines and spheroids by the CellTiter-Glo® assay, and in vivo using subcutaneous U87-MGvIII xenografts. In addition, mice were imaged pre- and post-PIT using the IVIS/Spectrum/CT to monitor treatment response. Binding of the conjugate correlated to the level of EGFR expression in GBM cell lines. The cell proliferation assay revealed a receptor-dependent response between the tested cell lines. Inhibition of EGFRvIII+ve tumor growth was observed following administration of the immunoconjugate and irradiation. Importantly, this response was not seen in control tumors. In conclusion, the ZEGFR:03115 -IR700DX showed specific uptake in vitro and enabled imaging of EGFR expression in the orthotopic brain tumor model. Moreover, the proof-of-concept in vivo PIT study demonstrated therapeutic efficacy of the conjugate in subcutaneous glioma xenografts.
Assuntos
Antineoplásicos Imunológicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Imunoconjugados/farmacologia , Imunoterapia , Fototerapia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Imunoterapia/métodos , Camundongos , Imagem Molecular , Fototerapia/métodos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Nitric oxide (NO) has been strongly implicated in glioma progression and angiogenesis. The endogenous inhibitors of NO synthesis, asymmetric dimethylarginine (ADMA) and N-monomethyl-L-arginine (L-NMMA), are metabolized by dimethylarginine dimethylaminohydrolase (DDAH), and hence, DDAH is an intracellular factor that regulates NO. However, DDAH may also have an NO-independent action. We aimed to investigate whether DDAH I has any direct role in tumour vascular development and growth independent of its NO-mediated effects, in order to establish the future potential of DDAH inhibition as an anti-angiogenic treatment strategy. A clone of rat C6 glioma cells deficient in NO production expressing a pTet Off regulatable element was identified and engineered to overexpress DDAH I in the absence of doxycycline. Xenografts derived from these cells were propagated in the presence or absence of doxycycline and susceptibility magnetic resonance imaging used to assess functional vasculature in vivo. Pathological correlates of tumour vascular density, maturation and function were also sought. In the absence of doxycycline, tumours exhibited high DDAH I expression and activity, which was suppressed in its presence. However, overexpression of DDAH I had no measurable effect on tumour growth, vessel density, function or maturation. These data suggest that in C6 gliomas DDAH has no NO-independent effects on tumour growth and angiogenesis, and that the therapeutic potential of targeting DDAH in gliomas should only be considered in the context of NO regulation.
Assuntos
Amidoidrolases/metabolismo , Glioma/enzimologia , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica/enzimologia , Amidoidrolases/genética , Animais , Linhagem Celular Tumoral , Feminino , Glioma/genética , Glioma/patologia , Xenoenxertos , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , RatosRESUMO
BACKGROUND: AKT is commonly overexpressed in tumours and plays an important role in the metabolic reprogramming of cancer. We have used magnetic resonance spectroscopy (MRS) to assess whether inhibition of AKT signalling would result in metabolic changes that could potentially be used as biomarkers to monitor response to AKT inhibition. METHODS: Cellular and metabolic effects of the allosteric AKT inhibitor MK-2206 were investigated in HT29 colon and PC3 prostate cancer cells and xenografts using flow cytometry, immunoblotting, immunohistology and MRS. RESULTS: In vitro treatment with MK-2206 inhibited AKT signalling and resulted in time-dependent alterations in glucose, glutamine and phospholipid metabolism. In vivo, MK-2206 resulted in inhibition of AKT signalling and tumour growth compared with vehicle-treated controls. In vivo MRS analysis of HT29 subcutaneous xenografts showed similar metabolic changes to those seen in vitro including decreases in the tCho/water ratio, tumour bioenergetic metabolites and changes in glutamine and glutathione metabolism. Similar phosphocholine changes compared to in vitro were confirmed in the clinically relevant orthotopic PC3 model. CONCLUSION: This MRS study suggests that choline metabolites detected in response to AKT inhibition are time and microenvironment-dependent, and may have potential as non-invasive biomarkers for monitoring response to AKT inhibitors in selected cancer types.
Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Espectroscopia de Ressonância Magnética/métodos , MasculinoRESUMO
Purpose To cross-validate T1-weighted oxygen-enhanced (OE) MRI measurements of tumor hypoxia with intrinsic susceptibility MRI measurements and to demonstrate the feasibility of translation of the technique for patients. Materials and Methods Preclinical studies in nine 786-0-R renal cell carcinoma (RCC) xenografts and prospective clinical studies in eight patients with RCC were performed. Longitudinal relaxation rate changes (∆R1) after 100% oxygen inhalation were quantified, reflecting the paramagnetic effect on tissue protons because of the presence of molecular oxygen. Native transverse relaxation rate (R2*) and oxygen-induced R2* change (∆R2*) were measured, reflecting presence of deoxygenated hemoglobin molecules. Median and voxel-wise values of ∆R1 were compared with values of R2* and ∆R2*. Tumor regions with dynamic contrast agent-enhanced MRI perfusion, refractory to signal change at OE MRI (referred to as perfused Oxy-R), were distinguished from perfused oxygen-enhancing (perfused Oxy-E) and nonperfused regions. R2* and ∆R2* values in each tumor subregion were compared by using one-way analysis of variance. Results Tumor-wise and voxel-wise ∆R1 and ∆R2* comparisons did not show correlative relationships. In xenografts, parcellation analysis revealed that perfused Oxy-R regions had faster native R2* (102.4 sec-1 vs 81.7 sec-1) and greater negative ∆R2* (-22.9 sec-1 vs -5.4 sec-1), compared with perfused Oxy-E and nonperfused subregions (all P < .001), respectively. Similar findings were present in human tumors (P < .001). Further, perfused Oxy-R helped identify tumor hypoxia, measured at pathologic analysis, in both xenografts (P = .002) and human tumors (P = .003). Conclusion Intrinsic susceptibility biomarkers provide cross validation of the OE MRI biomarker perfused Oxy-R. Consistent relationship to pathologic analyses was found in xenografts and human tumors, demonstrating biomarker translation. Published under a CC BY 4.0 license. Online supplemental material is available for this article.
Assuntos
Carcinoma de Células Renais/fisiopatologia , Hipóxia/fisiopatologia , Aumento da Imagem/métodos , Neoplasias Renais/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Animais , Biomarcadores , Carcinoma de Células Renais/complicações , Carcinoma de Células Renais/diagnóstico por imagem , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Humanos , Hipóxia/complicações , Hipóxia/diagnóstico por imagem , Rim/diagnóstico por imagem , Rim/patologia , Rim/fisiopatologia , Neoplasias Renais/complicações , Neoplasias Renais/diagnóstico por imagem , Masculino , Camundongos , Pessoa de Meia-Idade , Oxigênio , Estudos Prospectivos , Reprodutibilidade dos TestesRESUMO
OBJECTIVES: To determine the ability of multi-parametric, endogenous contrast MRI to detect and quantify fibrosis in a chemically-induced rat model of mammary carcinoma. METHODS: Female Sprague-Dawley rats (n=18) were administered with N-methyl-N-nitrosourea; resulting mammary carcinomas underwent nine-b-value diffusion-weighted (DWI), ultrashort-echo (UTE) and magnetisation transfer (MT) magnetic resonance imaging (MRI) on a clinical 1.5T platform, and associated quantitative MR parameters were calculated. Excised tumours were histologically assessed for degree of necrosis, collagen, hypoxia and microvessel density. Significance level adjusted for multiple comparisons was p=0.0125. RESULTS: Significant correlations were found between MT parameters and degree of picrosirius red staining (r > 0.85, p < 0.0002 for ka and δ, r < -0.75, p < 0.001 for T1 and T1s, Pearson), indicating that MT is sensitive to collagen content in mammary carcinoma. Picrosirius red also correlated with the DWI parameter fD* (r=0.801, p=0.0004) and conventional gradient-echo T2* (r=-0.660, p=0.0055). Percentage necrosis correlated moderately with ultrashort/conventional-echo signal ratio (r=0.620, p=0.0105). Pimonidazole adduct (hypoxia) and CD31 (microvessel density) staining did not correlate with any MR parameter assessed. CONCLUSIONS: Magnetisation transfer MRI successfully detects collagen content in mammary carcinoma, supporting inclusion of MT imaging to identify fibrosis, a prognostic marker, in clinical breast MRI examinations. KEY POINTS: ⢠Magnetisation transfer imaging is sensitive to collagen content in mammary carcinoma. ⢠Magnetisation transfer imaging to detect fibrosis in mammary carcinoma fibrosis is feasible. ⢠IVIM diffusion does not correlate with microvessel density in preclinical mammary carcinoma.
Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/patologia , Animais , Meios de Contraste , Feminino , Fibrose/diagnóstico por imagem , Humanos , Necrose/diagnóstico por imagem , Nitroimidazóis , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Ratos Sprague-DawleyRESUMO
BACKGROUND: The use of clinical MRI scanners to conduct pre-clinical research facilitates comparisons with clinical studies. Here the utility and sensitivity of anatomical and functional MRI data/biomarkers acquired from transgenic mouse models of neuroblastoma using a dedicated radiofrequency (RF) coil on a clinical 3T scanner was evaluated. METHODS: Multiparametric MRI of transgenic mice bearing abdominal neuroblastomas was performed at 3T, and data cross-referenced to that acquired from the same mice on a pre-clinical 7T MRI system. T2-weighted imaging, quantitation of the native longitudinal relaxation time (T1) and the transverse relaxation rate (R2*), and dynamic contrast-enhanced (DCE)-MRI, was used to assess tumour volume, phenotype and response to cyclophosphamide or cabozantinib. RESULTS: Excellent T2-weighted image contrast enabled clear tumour delineation at 3T. Significant correlations of tumour volume (R=0.98, P<0.0001) and R2* (R=0.87, P<0.002) measured at 3 and 7T were established. Mice with neuroblastomas harbouring the anaplastic lymphoma kinase mutation exhibited a significantly slower R2* (P<0.001), consistent with impaired tumour perfusion. DCE-MRI was performed simultaneously on three transgenic mice, yielding estimates of Ktrans for each tumour (median Ktrans values of 0.202, 0.168 and 0.114 min-1). Cyclophosphamide elicited a significant reduction in both tumour burden (P<0.002) and native T1 (P<0.01), whereas cabozantinib induced significant (P<0.01) tumour growth delay. CONCLUSIONS: Simultaneous multiparametric MRI of multiple tumour-bearing animals using this coil arrangement at 3T can provide high efficiency/throughput for both phenotypic characterisation and evaluation of novel therapeutics, and facilitate the introduction of functional MRI biomarkers into aligned imaging-embedded clinical trials.
Assuntos
Imageamento por Ressonância Magnética/métodos , Imãs , Neuroblastoma/diagnóstico por imagem , Neoplasias Gástricas/diagnóstico por imagem , Quinase do Linfoma Anaplásico , Anilidas/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Meios de Contraste , Ciclofosfamida/uso terapêutico , Modelos Animais de Doenças , Feminino , Imageamento por Ressonância Magnética/instrumentação , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Imagens de Fantasmas , Fenótipo , Piridinas/uso terapêutico , Receptores Proteína Tirosina Quinases/genética , Razão Sinal-Ruído , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Carga Tumoral/efeitos dos fármacosRESUMO
BACKGROUND: To assess antivascular effects, and evaluate clinically translatable magnetic resonance imaging (MRI) biomarkers of tumour response in vivo, following treatment with vanucizumab, a bispecific human antibody against angiopoietin-2 (Ang-2) and vascular endothelial growth factor-A (VEGF-A). METHODS: Colo205 colon cancer xenografts were imaged before and 5 days after treatment with a single 10 mg kg(-1) dose of either vanucizumab, bevacizumab (anti-human VEGF-A), LC06 (anti-murine/human Ang-2) or omalizumab (anti-human IgE control). Volumetric response was assessed using T2-weighted MRI, and diffusion-weighted, dynamic contrast-enhanced (DCE) and susceptibility contrast MRI used to quantify tumour water diffusivity (apparent diffusion coefficient (ADC), × 10(6) mm(2) s(-1)), vascular perfusion/permeability (K(trans), min(-1)) and fractional blood volume (fBV, %) respectively. Pathological correlates were sought, and preliminary gene expression profiling performed. RESULTS: Treatment with vanucizumab, bevacizumab or LC06 induced a significant (P<0.01) cytolentic response compared with control. There was no significant change in tumour ADC in any treatment group. Uptake of Gd-DTPA was restricted to the tumour periphery in all post-treatment groups. A significant reduction in tumour K(trans) (P<0.05) and fBV (P<0.01) was determined 5 days after treatment with vanucizumab only. This was associated with a significant (P<0.05) reduction in Hoechst 33342 uptake compared with control. Gene expression profiling identified 20 human genes exclusively regulated by vanucizumab, 6 of which are known to be involved in vasculogenesis and angiogenesis. CONCLUSIONS: Vanucizumab is a promising antitumour and antiangiogenic treatment, whose antivascular activity can be monitored using DCE and susceptibility contrast MRI. Differential gene expression in vanucizumab-treated tumours is regulated by the combined effect of Ang-2 and VEGF-A inhibition.
Assuntos
Adenocarcinoma/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Perfilação da Expressão Gênica , Imageamento por Ressonância Magnética/métodos , Terapia de Alvo Molecular , Neovascularização Patológica/tratamento farmacológico , Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Inibidores da Angiogênese/imunologia , Angiopoietina-2/antagonistas & inibidores , Angiopoietina-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados , Bevacizumab/uso terapêutico , Linhagem Celular Tumoral , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/patologia , Replicação do DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoglobulina E/imunologia , Camundongos , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/patologia , Omalizumab/uso terapêutico , Carga Tumoral , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/imunologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
High grade and metastatic brain tumours exhibit considerable spatial variations in proliferation, angiogenesis, invasion, necrosis and oedema. Vascular heterogeneity arising from vascular co-option in regions of invasive growth (in which the blood-brain barrier remains intact) and neoangiogenesis is a major challenge faced in the assessment of brain tumours by conventional MRI. A multiparametric MRI approach, incorporating native measurements and both Gd-DTPA (Magnevist) and ultrasmall superparamagnetic iron oxide (P904)-enhanced imaging, was used in combination with histogram and unsupervised cluster analysis using a k-means algorithm to examine the spatial distribution of vascular parameters, water diffusion characteristics and invasion in intracranially propagated rat RG2 gliomas and human MDA-MB-231 LM2-4 breast adenocarcinomas in mice. Both tumour models presented with higher ΔR1 (the change in transverse relaxation rate R1 induced by Gd-DTPA), fractional blood volume (fBV) and apparent diffusion coefficient than uninvolved regions of the brain. MDA-MB-231 LM2-4 tumours were less densely cellular than RG2 tumours and exhibited substantial local invasion, associated with oedema, whereas invasion in RG2 tumours was minimal. These additional features were reflected in the more heterogeneous appearance of MDA-MB-231 LM2-4 tumours on T2 -weighted images and maps of functional MRI parameters. Unsupervised cluster analysis separated subregions with distinct functional properties; areas with a low fBV and relatively impermeable blood vessels (low ΔR1 ) were predominantly located at the tumour margins, regions of MDA-MB-231 LM2-4 tumours with relatively high levels of water diffusion and low vascular permeability and/or fBV corresponded to histologically identified regions of invasion and oedema, and areas of mismatch between vascular permeability and blood volume were identified. We demonstrate that dual contrast MRI and evaluation of tissue diffusion properties, coupled with cluster analysis, allows for the assessment of heterogeneity within invasive brain tumours and the designation of functionally diverse subregions that may provide more informative predictive biomarkers.
Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Dextranos , Gadolínio DTPA , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Meios de Contraste , Feminino , Aumento da Imagem/métodos , Camundongos , Camundongos Nus , Imagem Multimodal/métodos , Invasividade Neoplásica , Ratos , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: To investigate the combined use of intravoxel incoherent motion (IVIM) diffusion-weighted (DW) and blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) to assess rat renal function using a 1.5T clinical platform. METHODS: Multiple b-value DW and BOLD MR images were acquired from adult rats using a parallel clinical coil arrangement, enabling quantitation of the apparent diffusion coefficient (ADC), IVIM-derived diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f), and the transverse relaxation time T2*, for whole kidney, renal cortex, and medulla. Following the acquisition of two baseline datasets to assess measurement repeatability, images were acquired following i.v. administration of hydralazine, furosemide, or angiotensin II for up to 40 min. RESULTS: Excellent repeatability (CoV <10 %) was observed for ADC, D, f and T2* measured over the whole kidney. Hydralazine induced a marked and significant (p < 0.05) reduction in whole kidney ADC, D, and T2*, and a significant (p < 0.05) increase in D* and f. Furosemide significantly (p < 0.05) increased whole kidney ADC, D, and T2*. A more variable response to angiotensin II was determined, with a significant (p < 0.05) increase in medulla D* and significant (p < 0.05) reduction in whole kidney T2* established. CONCLUSIONS: Multiparametric MRI, incorporating quantitation of IVIM DWI and BOLD biomarkers and performed on a clinical platform, can be used to monitor the acute effects of vascular and tubular modulating drugs on rat kidney function in vivo. Clinical adoption of such functional imaging biomarkers can potentially inform on treatment effects in patients with renal dysfunction.
Assuntos
Difusão/efeitos dos fármacos , Rim/diagnóstico por imagem , Rim/metabolismo , Imageamento por Ressonância Magnética/métodos , Oxigênio/metabolismo , Angiotensina II/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Imagem de Difusão por Ressonância Magnética/métodos , Diuréticos/farmacologia , Feminino , Furosemida/farmacologia , Hidralazina/farmacologia , Rim/fisiologia , Oxigênio/sangue , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Vasoconstritores/farmacologiaRESUMO
Methods of monitoring drug toxicity in off-target organs are very important in the development of effective and safe drugs. Standard 2-D techniques, such as histology, are prone to sampling errors and can miss important information. We demonstrate a novel application of optical computed tomography (CT) imaging to quantitatively assess, in 3-D, the response of adult murine spleen to off-target drug toxicity induced by treatment with the vascular disrupting agent ZD6126. Reconstructed images from optical CT scans sensitive to haemoglobin absorption reveal detailed, high-contrast 3-D maps of splenic structure and microvasculature. A significant difference in total splenic volume was found between vehicle and ZD6126-treated cohorts, with mean volumes of 61±3mm(3) and 44±3mm(3) respectively (both n=3, p=0.05). Textural statistics for each sample were calculated using grey-level co-occurrence matrices (GLCMs). Standard 2-D GLCM analysis was found to be slice-dependent while 3-D GLCM contrast and homogeneity analysis resulted in separation of the vehicle and ZD6126-treated cohorts over a range of length scales.
Assuntos
Microcirculação/fisiologia , Baço/patologia , Tomografia de Coerência Óptica , Animais , Meios de Contraste/química , Feminino , Hemoglobinas/química , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Compostos Organofosforados/químicaRESUMO
Background: KORTUC (0.5% hydrogen peroxide (H2O2) in 1% sodium-hyaluronate) releases cytotoxic levels of H2O2 in tissues after intratumoural injection. High levels of tumour control after radiotherapy plus KORTUC are reported in breast cancer patients. Here, we use human xenograft models to test the hypothesis that oxygen microbubbles released post-KORTUC are effective in modifying the hypoxic tumour microenvironment. Methods and materials: Pimonidazole and Image-iT™ Red (live hypoxia marker) were utilised to assess dose-dependent changes in hypoxia post-H2O2 in HCT116 and LICR-LON-HN5 spheroids. Using a dual 2-nitroimidazole-marker technique and phospho-ATM we evaluated changes in hypoxia and reactive oxygen species (ROS) respectively, in HCT116 and LICR-LON-HN5 xenografts following intratumoural KORTUC. Results: A significant reduction in Image-iT™ Red fluorescence was observed in spheroids 1 h post-H2O2 at ≥1.2 mM, maintained at 24 h. Ultrasound demonstrated sustained release of oxygen microbubbles within tumours, 1 h post-KORTUC. Hypoxia markers demonstrated significant tissue reoxygenation in both models post-KORTUC and significantly increased phospho-ATM foci reflecting increased ROS production. Conclusion: Intratumoural KORTUC represents a novel oxygen delivery method, which can be exploited to enhance radiation response. If efficacy is confirmed in the ongoing phase 2 breast trial it could improve treatment of several tumour types where hypoxia is known to affect radiotherapy outcomes.
RESUMO
PURPOSE: To evaluate noninvasive and clinically translatable magnetic resonance (MR) imaging biomarkers of therapeutic response in the TH-MYCN transgenic mouse model of aggressive, MYCN-amplified neuroblastoma. MATERIALS AND METHODS: All experiments were performed in accordance with the local ethical review panel and the UK Home Office Animals Scientific Procedures Act 1986 and with the UK National Cancer Research Institute guidelines for the welfare of animals in cancer research. Multiparametric MR imaging was performed of abdominal tumors found in the TH-MYCN model. T2-weighted MR imaging, quantitation of native relaxation times T1 and T2, the relaxation rate R2*, and dynamic contrast-enhanced MR imaging were used to monitor tumor response to cyclophosphamide (25 mg/kg), the vascular disrupting agent ZD6126 (200 mg/kg), or the antiangiogenic agent cediranib (6 mg/kg, daily). Any significant changes in the measured parameters, and in the magnitude of the changes after treatment between treated and control cohorts, were identified by using Student two-tailed paired and unpaired t test, respectively, with a 5% level of significance. RESULTS: Treatment with cyclophosphamide or cediranib induced a 54% or 20% reduction in tumor volume at 48 hours, respectively (P < .005 and P < .005, respectively; P < .005 and P < .005 versus control, respectively). Treatment with ZD6126 induced a 45% reduction in mean tumor volume 24 hours after treatment (P < .005; P < .005 versus control). The antitumor activity of cyclophosphamide, cediranib, and ZD6126 was consistently associated with a decrease in tumor T1 (P < .005, P < .005, and P < .005, respectively; P < .005, P < .005, and P < .005 versus control, respectively) and with a correlation between therapy-induced changes in native T1 and changes in tumor volume (r = 0.56; P < .005). Tumor response to cediranib was also associated with a decrease in the dynamic contrast-enhanced MR imaging-derived volume transfer constant (P = .07; P < .05 versus control) and enhancing fraction (P < .05; P < .01 versus control), and an increase in R2* (P < .005; P < .05 versus control). CONCLUSION: The T1 relaxation time is a robust noninvasive imaging biomarker of response to therapy in tumors in TH-MYCN mice, which emulate high-risk neuroblastoma in children. T1 measurements can be readily implemented on clinical MR systems and should be investigated in translational clinical trials of new targeted therapies for pediatric neuroblastoma. SUPPLEMENTAL MATERIAL: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12120128/-/DC1.
Assuntos
Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Animais , Biomarcadores , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc , Prognóstico , Proteínas Proto-Oncogênicas/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do TratamentoRESUMO
PURPOSE: To investigate the combined use of hyperoxia-inducedΔR(2) * and ΔR(1) as a noninvasive imaging biomarker of tumor hypoxia. MATERIALS AND METHODS: MRI was performed on rat GH3 prolactinomas (n = 6) and human PC3 prostate xenografts (n = 6) propagated in nude mice. multiple gradient echo and inversion recovery truefisp images were acquired from identical transverse slices to quantify tumor R(2) * and R(1)before and during carbogen (95% O2 /5% CO2 ) challenge, and correlates of ΔR(2) * and ΔR(1) assessed. RESULTS: Mean baseline R(2) * and R(1) were 119 ± 7 s(-1) and 0.6 ± 0.03 s(-1) for GH3 prolactinomas and 77 ± 12 s(-1) and 0.7 ± 0.02 s(-1) for PC3 xenografts, respectively. During carbogen breathing, mean ΔR(2) * and ΔR(1) were -20 ± 8 s(-1) and 0.08 ± 0.03 s(-1) for GH3 and -0.5 ± 1 s(-1) and 0.2 ± 0.08 s(-1) for the PC3 tumors, respectively. A pronounced relationship betweenΔR(2) * and ΔR(1) was revealed. CONCLUSION: Considering the blood oxygen-hemoglobin dissociation curve, fast R2 * suggested that GH3 prolactinomas were more hypoxic at baseline, and their carbogen response dominated by increased hemoglobin oxygenation, evidenced by highly negative ΔR(2) *. PC3 tumors were less hypoxic at baseline, and their response to carbogen dominated by increased dissolved oxygen, evidenced by highly positive ΔR(1) . Because the two biomarkers are sensitive to different oxygenation ranges, the combination of ΔR(2) * and ΔR(1) may better characterize tumor hypoxia than each alone.
Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Experimentais/diagnóstico , Neoplasias Experimentais/metabolismo , Oximetria/métodos , Oxigênio/metabolismo , Animais , Biomarcadores/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Humanos , Aumento da Imagem/métodos , Camundongos , Camundongos Nus , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Hyaluronan (HA) is a key component of the dense extracellular matrix in breast cancer, and its accumulation is associated with poor prognosis and metastasis. Pegvorhyaluronidase alfa (PEGPH20) enzymatically degrades HA and can enhance drug delivery and treatment response in preclinical tumour models. Clinical development of stromal-targeted therapies would be accelerated by imaging biomarkers that inform on therapeutic efficacy in vivo. Here, PEGPH20 response was assessed by multiparametric magnetic resonance imaging (MRI) in three orthotopic breast tumour models. Treatment of 4T1/HAS3 tumours, the model with the highest HA accumulation, reduced T1 and T2 relaxation times and the apparent diffusion coefficient (ADC), and increased the magnetisation transfer ratio, consistent with lower tissue water content and collapse of the extracellular space. The transverse relaxation rate R2 * increased, consistent with greater erythrocyte accessibility following vascular decompression. Treatment of MDA-MB-231 LM2-4 tumours reduced ADC and dramatically increased tumour viscoelasticity measured by MR elastography. Correlation matrix analyses of data from all models identified ADC as having the strongest correlation with HA accumulation, suggesting that ADC is the most sensitive imaging biomarker of tumour response to PEGPH20.
Assuntos
Neoplasias da Mama , Técnicas de Imagem por Elasticidade , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Feminino , Ácido Hialurônico/metabolismo , Microambiente Tumoral , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Imageamento por Ressonância Magnética/métodosRESUMO
Susceptibility contrast magnetic resonance imaging (MRI), utilising ultrasmall superparamagnetic iron oxide (USPIO) particles, was evaluated for the quantitation of vessel size index (Rv, µm), a weighted average measure of tumour blood vessel calibre, and fractional tumour blood volume (fBV, %), in orthotopically propagated murine PC3 prostate tumour xenografts. Tumour vascular architecture was assessed in vivo by MRI prior to and 24 hr after treatment with 200 mg/kg of the vascular disrupting agent ZD6126. A Bayesian hierarchical model (BHM) was used to reduce the uncertainty associated with quantitation of Rv and fBV. Quantitative histological analyses of the uptake of Hoechst 33342 for perfused vasculature, and haematoxylin and eosin staining for necrosis, were also performed to qualify the MRI data. A relatively large median Rv of 40.3 µm (90% confidence interval (CI90) = 37.4, 44.0 µm) and a high fBV of 5.4% (CI90 = 5.3, 5.5%) were determined in control tumours, which agreed with histologically determined vessel size index. Treatment with ZD6126 significantly (p < 0.01) reduced tumour Rv (34.2 µm, CI90 = 31.2, 38.0 µm) and fBV (3.9%, CI90 = 3.8, 4.1%), which were validated against histologically determined significant reductions in perfusion and vessel size, and increased necrosis. Together these data (i) highlight the use of a BHM to optimise the inferential power available from susceptibility contrast MRI data, (ii) provide strong evaluation and qualification of R(v) and fBV as non-invasive imaging biomarkers of tumour vascular morphology, (iii) reveal the presence of a different vascular phenotype and (iv) demonstrate that ZD6126 exhibits good anti-vascular activity against orthotopic prostate tumours.
Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/irrigação sanguínea , Animais , Teorema de Bayes , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Nus , Necrose/tratamento farmacológico , Necrose/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Compostos Organofosforados/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Transplante HeterólogoRESUMO
The recently described combined carbogen USPIO (CUSPIO) magnetic resonance imaging (MRI) method uses spatial correlations in independent imaging biomarkers to assess specific components of tumor vascular structure and function. Our study aimed to evaluate CUSPIO biomarkers for the assessment of tumor response to antiangiogenic therapy. CUSPIO imaging was performed in subcutaneous rat C6 gliomas before and 2 days after treatment with the potent VEGF-signaling inhibitor cediranib (n = 12), or vehicle (n = 12). Histological validation of Hoechst 33342 uptake (perfusion), smooth muscle actin staining (maturation), pimonidazole adduct formation (hypoxia) and necrosis were sought. Following treatment, there was a significant decrease in fractional blood volume (-43%, p < 0.01) and a significant increase in hemodynamic vascular functionality (treatment altered ΔR(2) *(carbogen) from 1.2 to -0.2 s(-1) , p < 0.05). CUSPIO imaging revealed an overall significant decrease in plasma perfusion (-27%, p < 0.05) following cediranib treatment, that was associated with selective effects on immature blood vessels. The CUSPIO responses were associated with a significant 15% reduction in Hoechst 33342 uptake (p < 0.05), but no significant difference in vascular maturation or necrosis. Additionally, treatment with cediranib resulted in a significant 40% increase in tumor hypoxia (p < 0.05). The CUSPIO imaging method provides novel and more specific biomarkers of tumor vessel maturity and vascular hemodynamics, and their response to VEGF-signaling inhibition, compared to current MR imaging biomarkers utilized in the clinic. Such biomarkers may prove effective in longitudinally monitoring tumor vascular remodeling and/or evasive resistance in response to antiangiogenic therapy.
Assuntos
Inibidores da Angiogênese/uso terapêutico , Biomarcadores Tumorais/metabolismo , Dextranos , Glioma/irrigação sanguínea , Glioma/tratamento farmacológico , Nanopartículas de Magnetita , Quinazolinas/uso terapêutico , Animais , Benzimidazóis/farmacologia , Meios de Contraste , Corantes Fluorescentes/farmacologia , Glioma/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Nitroimidazóis/metabolismo , Radiossensibilizantes/metabolismo , Ratos , Ratos Nus , Células Tumorais CultivadasRESUMO
Vessel size index (R(v), µm) has been proposed as a quantitative magnetic resonance imaging (MRI) derived imaging biomarker in oncology, for the non-invasive assessment of tumour blood vessel architecture and vascular targeted therapies. Appropriate pre-clinical evaluation of R(v) in animal tumour models will improve the interpretation and guide the introduction of the biomarker into clinical studies. The objective of this study was to compare R(v) measured in vivo with vessel size measurements from high-resolution X-ray computed tomography (µCT) of vascular corrosion casts measured post mortem from the same tumours, with and without vascular targeted therapy. MRI measurements were first acquired from subcutaneous SW1222 colorectal xenografts in mice following treatment with 0 (n=6), 30 (n=6) or 200 mg/kg (n=3) of the vascular disrupting agent ZD6126. The mice were then immediately infused with a low viscosity resin and, following polymerisation and maceration of surrounding tissues, the resulting tumour vascular casts were dissected and subsequently imaged using an optimised µCT imaging approach. Vessel diameters were not measurable by µCT in the 200 mg/kg group as the high dose of ZD6126 precluded delivery of the resin to the tumour vascular bed. The mean R(v) for the three treatment groups was 24, 23 and 23.5 µm respectively; the corresponding µCT measurements from corrosion casts from the 0 and 30 mg/kg cohorts were 25 and 28 µm. The strong association between the in vivo MRI and post mortem µCT values supports the use of R(v) as an imaging biomarker in clinical trials of investigational vascular targeted therapies.
Assuntos
Molde por Corrosão/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Compostos Organofosforados/farmacologia , Fatores de Tempo , Tomografia Computadorizada por Raios X/métodos , Microtomografia por Raio-X/métodosRESUMO
Dimethylarginine dimethylaminohydrolase (DDAH) metabolizes the endogenous inhibitor of nitric oxide synthesis, asymmetric dimethylarginine (ADMA). Constitutive over-expression of DDAH1, the isoform primarily associated with neuronal nitric oxide synthase (nNOS) results in increased tumour growth and vascularization, and elevated VEGF secretion. To address whether DDAH1-mediated tumour growth is reliant upon the enzymatic activity of DDAH1, cell lines expressing an active site mutant of DDAH1 incapable of metabolizing ADMA were created. Xenografts derived from these cell lines grew significantly faster than those derived from control cells, yet not as fast as those over-expressing wild-type DDAH1. VEGF expression in DDAH1 mutant-expressing tumours did not differ from control tumours but was significantly lower than that of wild-type DDAH1-over-expressing tumours. Fluorescence microscopy for CD31 and pimonidazole adduct formation demonstrated that DDAH1 mutant-expressing tumours had a lower endothelial content and demonstrated less hypoxia, respectively, than wild-type DDAH1-expressing tumours. However, there was no difference in uptake of the perfusion marker Hoechst 33342. Non-invasive multiparametric quantitative MRI, including the measurement of native T(1) and T(2) relaxation times and apparent water diffusion coefficient, was indicative of higher cellularity in DDAH1-expressing xenografts, which was confirmed by histological quantification of necrosis. C6 xenografts expressing active site mutant DDAH1 displayed an intermediate phenotype between tumours over-expressing wild-type DDAH1 and control tumours. These data suggest that enhanced VEGF expression downstream of DDAH1 was dependent upon ADMA metabolism, but that the DDAH1-mediated increase in tumour growth was only partially dependent upon its enzymatic activity, and therefore must involve an as-yet unidentified mechanism. DDAH1 is an important mediator of tumour progression, but appears to have addition roles independent of its metabolism of ADMA, which need to be considered in therapeutic strategies targeted against the NO/DDAH pathway in cancer.