RESUMO
Raman spectroscopy mapping was used to study ex vivo fresh lung tissues and compare to histology sections. The Raman mapping measurements revealed differences in the molecular composition of normal lung tissue, adenocarcinoma, and squamous cell carcinoma (SCC). Molecular heterogeneity of the tissue samples was well captured by the k -means clustering analysis of the Raman datasets, as confirmed by the correlation with the adjacent haematoxylin and eosin (H&E) stained tissue sections. The results indicate that the fluorescence background varies considerably even in samples that appear structurally uniform in the H&E images, both for normal and tumor tissue. The results show that characteristic Raman bands can be used to discriminate between tumorous and nontumorous lung tissues and between adenocarcinoma and SCC tissues. These results indicate the potential to develop Raman classifications models for lung tissues based on the Raman spectral differences at the microscopic level, which can be used for tissue diagnosis or treatment stratification.