Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(25): e2201761119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35709319

RESUMO

The BABY BOOM (BBM) AINTEGUMENTA-LIKE (AIL) AP2/ERF domain transcription factor is a major regulator of plant cell totipotency, as it induces asexual embryo formation when ectopically expressed. Surprisingly, only limited information is available on the role of BBM during zygotic embryogenesis. Here we reexamined BBM expression and function in the model plant Arabidopsis thaliana (Arabidopsis) using reporter analysis and newly developed CRISPR mutants. BBM was expressed in the embryo from the zygote stage and also in the maternal (nucellus) and filial (endosperm) seed tissues. Analysis of CRISPR mutant alleles for BBM (bbm-cr) and the redundantly acting AIL gene PLETHORA2 (PLT2) (plt2-cr) uncovered individual roles for these genes in the timing of embryo progression. We also identified redundant roles for BBM and PLT2 in endosperm proliferation and cellularization and the maintenance of zygotic embryo development. Finally, we show that ectopic BBM expression in the egg cell of Arabidopsis and the dicot crops Brassica napus and Solanum lycopersicon is sufficient to bypass the fertilization requirement for embryo development. Together these results highlight roles for BBM and PLT2 in seed development and demonstrate the utility of BBM genes for engineering asexual embryo development in dicot species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Endosperma , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Plant J ; 113(1): 7-22, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36345646

RESUMO

Somatic embryogenesis (SE), or embryo development from in vitro cultured vegetative explants, can be induced in Arabidopsis by the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) or by overexpression of specific transcription factors, such as AT-HOOK MOTIF NUCLEAR LOCALIZED 15 (AHL15). Here, we explored the role of endogenous auxin [indole-3-acetic acid (IAA)] during 2,4-D and AHL15-induced SE. Using the pWOX2:NLS-YFP reporter, we identified three distinct developmental stages for 2,4-D and AHL15-induced SE in Arabidopsis, with these being (i) acquisition of embryo identity; (ii) formation of pro-embryos; and (iii) somatic embryo patterning and development. The acquisition of embryo identity coincided with enhanced expression of the indole-3-pyruvic acid auxin biosynthesis YUCCA genes, resulting in an enhanced pDR5:GFP-reported auxin response in the embryo-forming tissues. Chemical inhibition of the indole-3-pyruvic acid pathway did not affect the acquisition of embryo identity, but significantly reduced or completely inhibited the formation of pro-embryos. Co-application of IAA with auxin biosynthesis inhibitors in the AHL15-induced SE system rescued differentiated somatic embryo formation, confirming that increased IAA levels are important during the last two stages of SE. Our analyses also showed that polar auxin transport, with AUXIN/LIKE-AUX influx and PIN-FORMED1 efflux carriers as important drivers, is required for the transition of embryonic cells to proembryos and, later, for correct cell fate specification and differentiation. Taken together, our results indicate that endogenous IAA biosynthesis and its polar transport are not required for the acquisition of embryo identity, but rather to maintain embryonic cell identity and for the formation of multicellular proembryos and their development into histodifferentiated embryos.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desenvolvimento Embrionário , Ácido 2,4-Diclorofenoxiacético/farmacologia , Ácido 2,4-Diclorofenoxiacético/metabolismo
3.
Physiol Plant ; 176(3): e14405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38923567

RESUMO

During microspore embryogenesis, microspores are induced to develop into haploid embryos. In Brassica napus, microspore embryogenesis is induced by a heat shock (HS), which initially produces embryogenic structures with different cell wall architectures and compositions, and with different potentials to develop into embryos. The B. napus DH4079 and DH12075 genotypes have high and very low embryo yields, respectively. In DH12075, embryo yield is greatly increased by combining HS and the histone deacetylase (HDAC) inhibitor trichostatin A (TSA). However, we show that HS + TSA inhibits embryogenesis in the highly embryogenic DH4079 line. To ascertain why TSA has such different effects in these lines, we treated DH4079 and DH12075 microspore cultures with TSA and compared the cell wall structure and composition of the different embryogenic structures in both lines, specifically the in situ levels and distribution of callose, cellulose, arabinogalactan proteins and high and low methyl-esterified pectin. For both lines, HS + TSA led to the formation of cell walls unfavorable for embryogenesis progression, with reduced levels of arabinogalactan proteins, reduced cell adhesion of inner walls and altered pectin composition. Thus, TSA effects on cell walls cannot explain their different embryogenic response to TSA. We also applied TSA to DH4079 cultures at different times and concentrations before HS application, with no negative effects on embryogenic induction. These results indicate that DH4079 microspores are hypersensitive to combined TSA and HS treatments, and open up new hypotheses about the causes of such hypersensitivity.


Assuntos
Brassica napus , Parede Celular , Genótipo , Resposta ao Choque Térmico , Ácidos Hidroxâmicos , Brassica napus/genética , Brassica napus/efeitos dos fármacos , Brassica napus/fisiologia , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Pólen/genética , Pólen/efeitos dos fármacos , Estresse Fisiológico
4.
Plant Physiol ; 188(2): 1095-1110, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34865162

RESUMO

Somatic embryogenesis is a type of plant cell totipotency where embryos develop from nonreproductive (vegetative) cells without fertilization. Somatic embryogenesis can be induced in vitro by auxins, and by ectopic expression of embryo-expressed transcription factors like the BABY BOOM (BBM) AINTEGUMENTA-LIKE APETALA2/ETHYLENE RESPONSE FACTOR domain protein. These different pathways are thought to converge to promote auxin response and biosynthesis, but the specific roles of the endogenous auxin pathway in somatic embryogenesis induction have not been well-characterized. Here we show that BBM transcriptionally regulates the YUCCA3 (YUC3) and YUC8 auxin biosynthesis genes during BBM-mediated somatic embryogenesis in Arabidopsis (Arabidopsis thaliana) seedlings. BBM induced local and ectopic YUC3 and YUC8 expression in seedlings, which coincided with increased DR5 auxin response and indole-3-acetic acid (IAA) biosynthesis and with ectopic expression of the WOX2 embryo reporter. YUC-driven auxin biosynthesis was required for BBM-mediated somatic embryogenesis, as the number of embryogenic explants was reduced by ca. 50% in yuc3 yuc8 mutants and abolished after chemical inhibition of YUC enzyme activity. However, a detailed YUC inhibitor time-course study revealed that YUC-dependent IAA biosynthesis is not required for the re-initiation of totipotent cell identity in seedlings. Rather, YUC enzymes are required later in somatic embryo development for the maintenance of embryo identity and growth. This study resolves a long-standing question about the role of endogenous auxin biosynthesis in transcription factor-mediated somatic embryogenesis and also provides an experimental framework for understanding the role of endogenous auxin biosynthesis in other in planta and in vitro embryogenesis systems.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação , Reguladores de Crescimento de Plantas/genética , Técnicas de Embriogênese Somática de Plantas , Sementes/genética , Fatores de Transcrição
5.
J Integr Plant Biol ; 64(6): 1281-1294, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35249255

RESUMO

Doubled haploid (DH) technology is used to obtain homozygous lines in a single generation, a technique that significantly accelerates the crop breeding trajectory. Traditionally, in vitro culture is used to generate DHs, but this technique is limited by species and genotype recalcitrance. In vivo haploid induction (HI) through seed is widely and efficiently used in maize and was recently extended to several other crops. Here we show that in vivo HI can be triggered by mutation of DMP maternal haploid inducer genes in allopolyploid (allotetraploid) Brassica napus and Nicotiana tabacum. We developed a pipeline for selection of DMP orthologs for clustered regularly interspaced palindromic repeats mutagenesis and demonstrated average amphihaploid induction rates of 2.4% and 1.2% in multiple B. napus and N. tabacum genotypes, respectively. These results further confirmed the HI ability of DMP gene in polyploid dicot crops. The DMP-HI system offers a novel DH technology to facilitate breeding in these crops. The success of this approach and the conservation of DMP genes in dicots suggest the broad applicability of this technique in other dicot crops.


Assuntos
Brassica napus , Brassica napus/genética , Produtos Agrícolas/genética , Haploidia , Melhoramento Vegetal , Poliploidia , Nicotiana/genética
6.
J Exp Bot ; 72(18): 6418-6436, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34175924

RESUMO

Somatic embryogenesis (SE) is a type of induced cell totipotency where embryos develop from vegetative tissues of the plant instead of from gamete fusion after fertilization. SE can be induced in vitro by exposing explants to growth regulators, such as the auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The plant hormone abscisic acid (ABA) has been proposed to be a downstream signalling component at the intersection between 2,4-D- and stress-induced SE, but it is not known how these pathways interact to induce cell totipotency. Here we show that 2,4-D-induced SE from the shoot apex of germinating Arabidopsis thaliana seeds is characterized by transcriptional maintenance of an ABA-dependent seed maturation pathway. Molecular-genetic analysis of Arabidopsis mutants revealed a role for ABA in promoting SE at three different levels: ABA biosynthesis, ABA receptor complex signalling, and ABA-mediated transcription, with essential roles for the ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABI4 transcription factors. Our data suggest that the ability of mature Arabidopsis embryos to maintain the ABA seed maturation environment is an important first step in establishing competence for auxin-induced cell totipotency. This finding provides further support for the role of ABA in directing processes other than abiotic stress response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Reguladores de Crescimento de Plantas , Sementes/metabolismo
7.
J Exp Bot ; 71(9): 2612-2628, 2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31974549

RESUMO

Cell-to-cell signalling is a major mechanism controlling plant morphogenesis. Transport of signalling molecules through plasmodesmata is one way in which plants promote or restrict intercellular signalling over short distances. Plasmodesmata are membrane-lined pores between cells that regulate the intercellular flow of signalling molecules through changes in their size, creating symplasmic fields of connected cells. Here we examine the role of plasmodesmata and symplasmic communication in the establishment of plant cell totipotency, using somatic embryo induction from Arabidopsis explants as a model system. Cell-to-cell communication was evaluated using fluorescent tracers, supplemented with histological and ultrastructural analysis, and correlated with expression of a WOX2 embryo reporter. We showed that embryogenic cells are isolated symplasmically from non-embryogenic cells regardless of the explant type (immature zygotic embryos or seedlings) and inducer system (2,4-dichlorophenoxyacetic acid or the BABY BOOM (BBM) transcription factor), but that the symplasmic domains in different explants differ with respect to the maximum size of molecule capable of moving through the plasmodesmata. Callose deposition in plasmodesmata preceded WOX2 expression in future sites of somatic embryo development, but later was greatly reduced in WOX2-expressing domains. Callose deposition was also associated with a decrease DR5 auxin response in embryogenic tissue. Treatment of explants with the callose biosynthesis inhibitor 2-deoxy-D-glucose supressed somatic embryo formation in all three systems studied, and also blocked the observed decrease in DR5 expression. Together these data suggest that callose deposition at plasmodesmata is required for symplasmic isolation and establishment of cell totipotency in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Desenvolvimento Embrionário , Ácidos Indolacéticos , Plasmodesmos
8.
Development ; 142(3): 454-64, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25564655

RESUMO

Aintegumenta-like (AIL) transcription factors are key regulators of cell proliferation and meristem identity. Although AIL functions have been well described, the direct signalling components of this pathway are largely unknown. We show that baby boom (BBM) and other AIL proteins physically interact with multiple members of the L1-expressed homeodomain glabrous (HDG) transcription factor family, including HDG1, HDG11 and HDG12. Overexpression of HDG1, HDG11 and HDG12 restricts growth due to root and shoot meristem arrest, which is associated with reduced expression of genes involved in meristem development and cell proliferation pathways, whereas downregulation of multiple HDG genes promotes cell overproliferation. These results suggest a role for HDG proteins in promoting cell differentiation. We also reveal a transcriptional network in which BBM and HDG1 regulate several common target genes, and where BBM/AIL and HDG regulate the expression of each other. Taken together, these results suggest opposite roles for AIL and HDG proteins, with AILs promoting cell proliferation and HDGs stimulating cell differentiation, and that these functions are mediated at both the protein-protein interaction and transcriptional level.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Imunoprecipitação da Cromatina , Microscopia Crioeletrônica , Primers do DNA/genética , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica de Plantas/genética , Vetores Genéticos/genética , Análise em Microsséries , Microscopia Confocal , Família Multigênica/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Fatores de Transcrição/genética
9.
Development ; 142(4): 702-11, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25617434

RESUMO

The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during embryonic shoot and root specification, the role of the auxin influx carriers AUX1 and LIKE-AUX1 (LAX) proteins is not well established. Here, we used chemical and genetic tools on Brassica napus microspore-derived embryos and Arabidopsis thaliana zygotic embryos, and demonstrate that AUX1, LAX1 and LAX2 are required for both shoot and root pole formation, in concert with PIN efflux carriers. Furthermore, we uncovered a positive-feedback loop between MONOPTEROS (ARF5)-dependent auxin signalling and auxin transport. This MONOPTEROS-dependent transcriptional regulation of auxin influx (AUX1, LAX1 and LAX2) and auxin efflux (PIN1 and PIN4) carriers by MONOPTEROS helps to maintain proper auxin transport to the root tip. These results indicate that auxin-dependent cell specification during embryo development requires balanced auxin transport involving both influx and efflux mechanisms, and that this transport is maintained by a positive transcriptional feedback on auxin signalling.


Assuntos
Arabidopsis/embriologia , Arabidopsis/metabolismo , Brassica napus/embriologia , Brassica napus/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Sementes/citologia , Sementes/metabolismo , Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Brassica napus/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
10.
Plant Physiol ; 175(2): 848-857, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28830937

RESUMO

Somatic embryogenesis is an example of induced cellular totipotency, where embryos develop from vegetative cells rather than from gamete fusion. Somatic embryogenesis can be induced in vitro by exposing explants to growth regulators and/or stress treatments. The BABY BOOM (BBM) and LEAFY COTYLEDON1 (LEC1) and LEC2 transcription factors are key regulators of plant cell totipotency, as ectopic overexpression of either transcription factor induces somatic embryo formation from Arabidopsis (Arabidopsis thaliana) seedlings without exogenous growth regulators or stress treatments. Although LEC and BBM proteins regulate the same developmental process, it is not known whether they function in the same molecular pathway. We show that BBM transcriptionally regulates LEC1 and LEC2, as well as the two other LAFL genes, FUSCA3 (FUS3) and ABSCISIC ACIDINSENSITIVE3 (ABI3). LEC2 and ABI3 quantitatively regulate BBM-mediated somatic embryogenesis, while FUS3 and LEC1 are essential for this process. BBM-mediated somatic embryogenesis is dose and context dependent, and the context-dependent phenotypes are associated with differential LAFL expression. We also uncover functional redundancy for somatic embryogenesis among other Arabidopsis BBM-like proteins and show that one of these proteins, PLETHORA2, also regulates LAFL gene expression. Our data place BBM upstream of other major regulators of plant embryo identity and totipotency.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Embriogênese Somática de Plantas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
11.
Plant J ; 88(3): 437-451, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27402171

RESUMO

Here we describe an uncharacterized gene that negatively influences Arabidopsis growth and reproductive development. DRINK ME (DKM; bZIP30) is a member of the bZIP transcription factor family, and is expressed in meristematic tissues such as the inflorescence meristem (IM), floral meristem (FM), and carpel margin meristem (CMM). Altered DKM expression affects meristematic tissues and reproductive organ development, including the gynoecium, which is the female reproductive structure and is determinant for fertility and sexual reproduction. A microarray analysis indicates that DKM overexpression affects the expression of cell cycle, cell wall, organ initiation, cell elongation, hormone homeostasis, and meristem activity genes. Furthermore, DKM can interact in yeast and in planta with proteins involved in shoot apical meristem maintenance such as WUSCHEL, KNAT1/BP, KNAT2 and JAIBA, and with proteins involved in medial tissue development in the gynoecium such as HECATE, BELL1 and NGATHA1. Taken together, our results highlight the relevance of DKM as a negative modulator of Arabidopsis growth and reproductive development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/genética , Fatores de Transcrição/genética
13.
Plant Cell ; 26(1): 195-209, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24464291

RESUMO

The haploid male gametophyte, the pollen grain, is a terminally differentiated structure whose function ends at fertilization. Plant breeding and propagation widely use haploid embryo production from in vitro-cultured male gametophytes, but this technique remains poorly understood at the mechanistic level. Here, we show that histone deacetylases (HDACs) regulate the switch to haploid embryogenesis. Blocking HDAC activity with trichostatin A (TSA) in cultured male gametophytes of Brassica napus leads to a large increase in the proportion of cells that switch from pollen to embryogenic growth. Embryogenic growth is enhanced by, but not dependent on, the high-temperature stress that is normally used to induce haploid embryogenesis in B. napus. The male gametophyte of Arabidopsis thaliana, which is recalcitrant to haploid embryo development in culture, also forms embryogenic cell clusters after TSA treatment. Genetic analysis suggests that the HDAC protein HDA17 plays a role in this process. TSA treatment of male gametophytes is associated with the hyperacetylation of histones H3 and H4. We propose that the totipotency of the male gametophyte is kept in check by an HDAC-dependent mechanism and that the stress treatments used to induce haploid embryo development in culture impinge on this HDAC-dependent pathway.


Assuntos
Arabidopsis/citologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Acetilação , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Histonas/metabolismo , Ácidos Indolacéticos/metabolismo , Pólen/citologia , Pólen/efeitos dos fármacos , Pólen/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos
14.
Plant Cell ; 26(6): 2568-2581, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24951481

RESUMO

In Arabidopsis thaliana, zygotic embryo divisions are highly regular, but it is not clear how embryo patterning is established in species or culture systems with irregular cell divisions. We investigated this using the Brassica napus microspore embryogenesis system, where the male gametophyte is reprogrammed in vitro to form haploid embryos in the absence of exogenous growth regulators. Microspore embryos are formed via two pathways: a zygotic-like pathway, characterized by initial suspensor formation followed by embryo proper formation from the distal cell of the suspensor, and a pathway characterized by initially unorganized embryos lacking a suspensor. Using embryo fate and auxin markers, we show that the zygotic-like pathway requires polar auxin transport for embryo proper specification from the suspensor, while the suspensorless pathway is polar auxin transport independent and marked by an initial auxin maximum, suggesting early embryo proper establishment in the absence of a basal suspensor. Polarity establishment in this suspensorless pathway was triggered and guided by rupture of the pollen exine. Irregular division patterns did not affect cell fate establishment in either pathway. These results confirm the importance of the suspensor and suspensor-driven auxin transport in patterning, but also uncover a mechanism where cell patterning is less regular and independent of auxin transport.

15.
Int J Mol Sci ; 15(6): 9628-43, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24886811

RESUMO

Since its introduction in plants 10 years ago, the bimolecular fluorescence complementation (BiFC) method, or split-YFP (yellow fluorescent protein), has gained popularity within the plant biology field as a method to study protein-protein interactions. BiFC is based on the restoration of fluorescence after the two non-fluorescent halves of a fluorescent protein are brought together by a protein-protein interaction event. The major drawback of BiFC is that the fluorescent protein halves are prone to self-assembly independent of a protein-protein interaction event. To circumvent this problem, several modifications of the technique have been suggested, but these modifications have not lead to improvements in plant BiFC protocols. Therefore, it remains crucial to include appropriate internal controls. Our literature survey of recent BiFC studies in plants shows that most studies use inappropriate controls, and a qualitative rather than quantitative read-out of fluorescence. Therefore, we provide a cautionary note and beginner's guideline for the setup of BiFC experiments, discussing each step of the protocol, including vector choice, plant expression systems, negative controls, and signal detection. In addition, we present our experience with BiFC with respect to self-assembly, peptide linkers, and incubation temperature. With this note, we aim to provide a guideline that will improve the quality of plant BiFC experiments.


Assuntos
Proteínas de Bactérias/análise , Corantes Fluorescentes/análise , Proteínas Luminescentes/análise , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corantes Fluorescentes/metabolismo , Vetores Genéticos/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Proteínas de Plantas/análise , Transfecção
16.
Plant Cell Rep ; 30(6): 1107-15, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21305301

RESUMO

Pepper (Capsicum L.) is a nutritionally and economically important crop that is cultivated throughout the world as a vegetable, condiment, and food additive. Genetic transformation using Agrobacterium tumefaciens (agrobacterium) is a powerful biotechnology tool that could be used in pepper to develop community-based functional genomics resources and to introduce important agronomic traits. However, pepper is considered to be highly recalcitrant for agrobacterium-mediated transformation, and current transformation protocols are either inefficient, cumbersome or highly genotype dependent. The main bottleneck in pepper transformation is the inability to generate cells that are competent for both regeneration and transformation. Here, we report that ectopic expression of the Brassica napus BABY BOOM AP2/ERF transcription factor overcomes this bottleneck and can be used to efficiently regenerate transgenic plants from otherwise recalcitrant sweet pepper (C. annuum) varieties. Transient activation of BABY BOOM in the progeny plants induced prolific cell regeneration and was used to produce a large number of somatic embryos that could be converted readily to seedlings. The data highlight the utility of combining biotechnology and classical plant tissue culture approaches to develop an efficient transformation and regeneration system for a highly recalcitrant vegetable crop.


Assuntos
Brassica napus/metabolismo , Capsicum/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Transformação Genética , Capsicum/fisiologia , Plantas Geneticamente Modificadas , Regeneração/fisiologia
17.
Front Plant Sci ; 12: 737139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691114

RESUMO

Microspore cultures generate a heterogeneous population of embryogenic structures that can be grouped into highly embryogenic structures [exine-enclosed (EE) and loose bicellular structures (LBS)] and barely embryogenic structures [compact callus (CC) and loose callus (LC) structures]. Little is known about the factors behind these different responses. In this study we performed a comparative analysis of the composition and architecture of the cell walls of each structure by confocal and quantitative electron microscopy. Each structure presented specific cell wall characteristics that defined their developmental fate. EE and LBS structures, which are responsible for most of the viable embryos, showed a specific profile with thin walls rich in arabinogalactan proteins (AGPs), highly and low methyl-esterified pectin and callose, and a callose-rich subintinal layer not necessarily thick, but with a remarkably high callose concentration. The different profiles of EE and LBS walls support the development as suspensorless and suspensor-bearing embryos, respectively. Conversely, less viable embryogenic structures (LC) presented the thickest walls and the lowest values for almost all of the studied cell wall components. These cell wall properties would be the less favorable for cell proliferation and embryo progression. High levels of highly methyl-esterified pectin are necessary for wall flexibility and growth of highly embryogenic structures. AGPs seem to play a role in cell wall stiffness, possibly due to their putative role as calcium capacitors, explaining the positive relationship between embryogenic potential and calcium levels.

18.
Nat Commun ; 12(1): 2508, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947865

RESUMO

Plant somatic cells can be reprogrammed into totipotent embryonic cells that are able to form differentiated embryos in a process called somatic embryogenesis (SE), by hormone treatment or through overexpression of certain transcription factor genes, such as BABY BOOM (BBM). Here we show that overexpression of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED 15 (AHL15) gene induces formation of somatic embryos on Arabidopsis thaliana seedlings in the absence of hormone treatment. During zygotic embryogenesis, AHL15 expression starts early in embryo development, and AH15 and other AHL genes are required for proper embryo patterning and development beyond the globular stage. Moreover, AHL15 and several of its homologs are upregulated and required for SE induction upon hormone treatment, and they are required for efficient BBM-induced SE as downstream targets of BBM. A significant number of plants derived from AHL15 overexpression-induced somatic embryos are polyploid. Polyploidisation occurs by endomitosis specifically during the initiation of SE, and is caused by strong heterochromatin decondensation induced by AHL15 overexpression.


Assuntos
Motivos AT-Hook , Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica de Plantas/genética , Técnicas de Embriogênese Somática de Plantas , Proteínas de Arabidopsis/genética , Segregação de Cromossomos/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Poliploidia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
19.
Plant Reprod ; 33(3-4): 143-158, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32651727

RESUMO

KEY MESSAGE: In vitro embryo development is highly plastic; embryo cell fate can be re-established in tissue culture through different pathways. In most angiosperms, embryo development from the single-celled zygote follows a defined pattern of cell divisions in which apical (embryo proper) and basal (root and suspensor) cell fates are established within the first cell divisions. By contrast, embryos that are induced in vitro in the absence of fertilization show a less regular initial cell division pattern yet develop into histodifferentiated embryos that can be converted into seedlings. We used the Brassica napus microspore embryogenesis system, in which the male gametophyte is reprogrammed in vitro to form haploid embryos, to identify the developmental fates of the different types of embryogenic structures found in culture. Using time-lapse imaging of LEAFY COTYLEDON1-expressing cells, we show that embryogenic cell clusters with very different morphologies are able to form haploid embryos. The timing of surrounding pollen wall (exine) rupture is a major determinant of cell fate in these clusters, with early exine rupture leading to the formation of suspensor-bearing embryos and late rupture to suspensorless embryos. In addition, we show that embryogenic callus, which develops into suspensor-bearing embryos, initially expresses transcripts associated with both basal- and apical-embryo cell fates, suggesting that these two cell fates are fixed later in development. This study reveals the inherent plasticity of in vitro embryo development and identifies new pathways by which embryo cell fate can be established.


Assuntos
Brassica napus , Sementes , Brassica napus/anatomia & histologia , Brassica napus/embriologia , Brassica napus/genética , Plasticidade Celular , Haploidia , Pólen , Sementes/anatomia & histologia , Células-Tronco Totipotentes/citologia
20.
Nat Plants ; 6(5): 466-472, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32415294

RESUMO

Doubled haploid technology using inducer lines carrying mutations in ZmPLA1/MTL/NLD and ZmDMP1-4 has revolutionized traditional maize breeding. ZmPLA1/MTL/NLD is conserved in monocots and has been used to extend the system from maize to other monocots5-7, but no functional orthologue has been identified in dicots, while ZmDMP-like genes exist in both monocots and dicots4,8,9. Here, we report that loss-of-function mutations in the Arabidopsis thaliana ZmDMP-like genes AtDMP8 and AtDMP9 induce maternal haploids, with an average haploid induction rate of 2.1 ± 1.1%. In addition, to facilitate haploid seed identification in dicots, we established an efficient FAST-Red fluorescent marker-based haploid identification system that enables the identification of haploid seeds with >90% accuracy. These results show that mutations in DMP genes also trigger haploid induction in dicots. The conserved expression patterns and amino acid sequences of ZmDMP-like genes in dicots suggest that DMP mutations could be used to develop in vivo haploid induction systems in dicots.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Haploidia , Proteínas de Membrana/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Edição de Genes , Genes de Plantas/genética , Genes de Plantas/fisiologia , Mutação com Perda de Função/genética , Proteínas de Membrana/fisiologia , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA