Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 152(5): 523-541, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31376158

RESUMO

N-methyl-d-aspartate receptors (NMDARs) mediate both physiological and pathophysiological processes, although selective ligands lack broad clinical utility. NMDARs are composed of multiple subunits, but N-methyl-d-aspartate receptor subunit 2 (GluN2) is predominately responsible for functional heterogeneity. Specifically, the GluN2A- and GluN2B-containing subtypes are enriched in adult hippocampus and cortex and impact neuronal communication via dynamic trafficking into and out of the synapse. We sought to understand if ((2S, 3R)-3-hydroxy-2-((R)-5-isobutyryl-1-oxo-2,5-diazaspiro[3,4]octan-2-yl) butanamide (NYX-2925), a novel NMDAR modulator, alters synaptic levels of GluN2A- or GluN2B-containing NMDARs. Low-picomolar NYX-2925 increased GluN2B colocalization with the excitatory post-synaptic marker post-synaptic density protein 95 (PSD-95) in rat primary hippocampal neurons within 30 min. Twenty-four hours following oral administration, 1 mg/kg NYX-2925 increased GluN2B in PSD-95-associated complexes ex vivo, and low-picomolar NYX-2925 regulated numerous trafficking pathways in vitro. Because the NYX-2925 concentration that increases synaptic GluN2B was markedly below that which enhances long-term potentiation (mid-nanomolar), we sought to elucidate the basis of this effect. Although NMDAR-dependent, NYX-2925-mediated colocalization of GluN2B with PSD-95 occurred independent of ion flux, as colocalization increased in the presence of either the NMDAR channel blocker (5R,10S)-(-)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate or glycine site antagonist 7-chlorokynurenic acid. Moreover, while mid-nanomolar NYX-2925 concentrations, which do not increase synaptic GluN2B, enhanced calcium transients, functional plasticity was only enhanced by picomolar NYX-2925. Thus, NYX-2925 concentrations that increase synaptic GluN2B facilitated the chemical long-term potentiation induced insertion of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunit levels. Basal (unstimulated by chemical long-term potentiation) levels of synaptic GluA1 were only increased by mid-nanomolar NYX-2925. These data suggest that NYX-2925 facilitates homeostatic plasticity by initially increasing synaptic GluN2B via metabotropic-like NMDAR signaling. Cover Image for this issue: doi: 10.1111/jnc.14735.


Assuntos
Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Compostos de Espiro/farmacologia , Sinapses/metabolismo , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos
2.
J Pharmacol Exp Ther ; 366(3): 485-497, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986951

RESUMO

NYX-2925 [(2S,3R)-3-hydroxy-2-((R)-5-isobutyryl-1-oxo-2,5-diazaspiro[3.4]octan-2-yl)butanamide] is a novel N-methyl-d-aspartate (NMDA) receptor modulator that is currently being investigated in phase 2 clinical studies for the treatment of painful diabetic peripheral neuropathy and fibromyalgia. Previous studies demonstrated that NYX-2925 is a member of a novel class of NMDA receptor-specific modulators that affect synaptic plasticity processes associated with learning and memory. Studies here examined NYX-2925 administration in rat peripheral chronic constriction nerve injury (CCI) and streptozotocin-induced diabetic mechanical hypersensitivity. Additionally, NYX-2925 was examined in formalin-induced persistent pain model and the tail flick test of acute nociception. Oral administration of NYX-2925 resulted in rapid and long-lasting analgesia in both of the neuropathic pain models and formalin-induced persistent pain, but was ineffective in the tail flick model. The analgesic effects of NYX-2925 were blocked by the systemic administration of NMDA receptor antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid. Microinjection of NYX-2925 into the medial prefrontal cortex of CCI rats resulted in analgesic effects similar to those observed following systemic administration, whereas intrathecal administration of NYX-2925 was ineffective. In CCI animals, NYX-2925 administration reversed deficits seen in a rat model of rough-and-tumble play. Thus, it appears that NYX-2925 may have therapeutic potential for the treatment of neuropathic pain, and the data presented here support the idea that NYX-2925 may act centrally to ameliorate pain and modulate negative affective states associated with chronic neuropathic pain.


Assuntos
Analgésicos/farmacologia , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Compostos de Espiro/farmacologia , Analgésicos/uso terapêutico , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Compostos de Espiro/uso terapêutico , Vocalização Animal/efeitos dos fármacos
3.
Alcohol Clin Exp Res ; 42(8): 1476-1485, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29786878

RESUMO

BACKGROUND: Complex interactions between environmental and genetic factors influence the risk of developing alcohol use disorder (AUD) in humans. To date, studies of the impact of environment on AUD risk have primarily focused on psychological characteristics or on the effects of developmental exposure to ethanol (EtOH). We recently observed that modifying levels of the long-chain ω-3 (LC ω-3) fatty acid, eicosapentaenoic acid (EPA), alters acute physiological responses to EtOH in Caenorhabditis elegans. Because mammals derive ω-3 fatty acids from their diet, here we asked if manipulating dietary levels of LC ω-3 fatty acids can affect EtOH-responsive behaviors in mice. METHODS: We used 2 well-characterized inbred mouse strains, C57BL/6J (B6) and DBA/2J (D2), which differ in their responses to EtOH. Age-matched young adult male mice were maintained on isocaloric diets that differed only by being enriched or depleted in LC ω-3 fatty acids. Animals were subsequently tested for acute EtOH sensitivity (locomotor activation and sedation), voluntary consumption, and metabolism. Fat deposition was also determined. RESULTS: We found that dietary levels of LC ω-3s altered EtOH sensitivity and consumption in a genotype-specific manner. Both B6 and D2 animals fed high LC ω-3 diets demonstrated lower EtOH-induced locomotor stimulation than those fed low LC ω-3 diets. EtOH sedation and EtOH metabolism were greater in D2, but not B6 mice on the high LC ω-3 diet. Conversely, LC ω-3 dietary manipulation altered EtOH consumption in B6, but not in D2 mice. B6 mice on a high LC ω-3 diet consumed more EtOH in a 2-bottle choice intermittent access model than B6 mice on a low LC ω-3 diet. CONCLUSIONS: Because EtOH sensitivity is predictive of risk of developing AUD in humans, our data indicate that dietary LC ω-3 levels should be evaluated for their impact on AUD risk in humans. Further, these studies indicate that genetic background can interact with fatty acids in the diet to significantly alter EtOH-responsive behaviors.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Dieta , Etanol/farmacologia , Ácidos Graxos Ômega-3/administração & dosagem , Alcoolismo/fisiopatologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Especificidade da Espécie
4.
Alcohol Clin Exp Res ; 41(5): 911-928, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28226201

RESUMO

BACKGROUND: Alcohol dependence (AD) shows evidence for genetic liability, but genes influencing risk remain largely unidentified. METHODS: We conducted a genomewide association study in 706 related AD cases and 1,748 unscreened population controls from Ireland. We sought replication in 15,496 samples of European descent. We used model organisms (MOs) to assess the role of orthologous genes in ethanol (EtOH)-response behaviors. We tested 1 primate-specific gene for expression differences in case/control postmortem brain tissue. RESULTS: We detected significant association in COL6A3 and suggestive association in 2 previously implicated loci, KLF12 and RYR3. None of these signals are significant in replication. A suggestive signal in the long noncoding RNA LOC339975 is significant in case:control meta-analysis, but not in a population sample. Knockdown of a COL6A3 ortholog in Caenorhabditis elegans reduced EtOH sensitivity. Col6a3 expression correlated with handling-induced convulsions in mice. Loss of function of the KLF12 ortholog in C. elegans impaired development of acute functional tolerance (AFT). Klf12 expression correlated with locomotor activation following EtOH injection in mice. Loss of function of the RYR3 ortholog reduced EtOH sensitivity in C. elegans and rapid tolerance in Drosophila. The ryanodine receptor antagonist dantrolene reduced motivation to self-administer EtOH in rats. Expression of LOC339975 does not differ between cases and controls but is reduced in carriers of the associated rs11726136 allele in nucleus accumbens (NAc). CONCLUSIONS: We detect association between AD and COL6A3, KLF12, RYR3, and LOC339975. Despite nonreplication of COL6A3, KLF12, and RYR3 signals, orthologs of these genes influence behavioral response to EtOH in MOs, suggesting potential involvement in human EtOH response and AD liability. The associated LOC339975 allele may influence gene expression in human NAc. Although the functions of long noncoding RNAs are poorly understood, there is mounting evidence implicating these genes in multiple brain functions and disorders.


Assuntos
Alcoolismo/genética , Etanol/administração & dosagem , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Modelos Animais , Adulto , Alcoolismo/diagnóstico , Alcoolismo/epidemiologia , Animais , Caenorhabditis elegans , Estudos de Casos e Controles , Drosophila , Feminino , Loci Gênicos/efeitos dos fármacos , Predisposição Genética para Doença/epidemiologia , Humanos , Irlanda/epidemiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Pessoa de Meia-Idade , Ratos
5.
Alcohol Clin Exp Res ; 40(9): 1802-16, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27476876

RESUMO

Several laboratories recently identified that astrocytes are critical regulators of addiction machinery. It is now known that astrocyte pathology is a common feature of ethanol (EtOH) exposure in both humans and animal models, as even brief EtOH exposure is sufficient to elicit long-lasting perturbations in astrocyte gene expression, activity, and proliferation. Astrocytes were also recently shown to modulate the motivational properties of EtOH and other strongly reinforcing stimuli. Given the role of astrocytes in regulating glutamate homeostasis, a crucial component of alcohol use disorder (AUD), astrocytes might be an important target for the development of next-generation alcoholism treatments. This review will outline some of the more prominent features displayed by astrocytes, how these properties are influenced by acute and long-term EtOH exposure, and future directions that may help to disentangle astrocytic from neuronal functions in the etiology of AUD.


Assuntos
Transtornos Relacionados ao Uso de Álcool/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Etanol/administração & dosagem , Transtornos Relacionados ao Uso de Álcool/etiologia , Transtornos Relacionados ao Uso de Álcool/genética , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Humanos
6.
J Neurosci ; 34(38): 12850-64, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232120

RESUMO

Synaptodendritic injury is thought to underlie HIV-associated neurocognitive disorders and contributes to exaggerated inflammation and cognitive impairment seen in opioid abusers with HIV-1. To examine events triggering combined transactivator of transcription (Tat)- and morphine-induced synaptodendritic injury systematically, striatal neuron imaging studies were conducted in vitro. These studies demonstrated nearly identical pathologic increases in dendritic varicosities as seen in Tat transgenic mice in vivo. Tat caused significant focal increases in intracellular sodium ([Na(+)]i) and calcium ([Ca(2+)]i) in dendrites that were accompanied by the emergence of dendritic varicosities. These effects were largely, but not entirely, attenuated by the NMDA and AMPA receptor antagonists MK-801 and CNQX, respectively. Concurrent morphine treatment accelerated Tat-induced focal varicosities, which were accompanied by localized increases in [Ca(2+)]i and exaggerated instability in mitochondrial inner membrane potential. Importantly, morphine's effects were prevented by the µ-opioid receptor antagonist CTAP and were not observed in neurons cultured from µ-opioid receptor knock-out mice. Combined Tat- and morphine-induced initial losses in ion homeostasis and increases in [Ca(2+)]i were attenuated by the ryanodine receptor inhibitor ryanodine, as well as pyruvate. In summary, Tat induced increases in [Na(+)]i, mitochondrial instability, excessive Ca(2+) influx through glutamatergic receptors, and swelling along dendrites. Morphine, acting via µ-opioid receptors, exacerbates these excitotoxic Tat effects at the same subcellular locations by mobilizing additional [Ca(2+)]i and by further disrupting [Ca(2+)]i homeostasis. We hypothesize that the spatiotemporal relationship of µ-opioid and aberrant AMPA/NMDA glutamate receptor signaling is critical in defining the location and degree to which opiates exacerbate the synaptodendritic injury commonly observed in neuroAIDS.


Assuntos
Cálcio/metabolismo , Dendritos/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mitocôndrias/efeitos dos fármacos , Morfina/farmacologia , Sódio/metabolismo , Sinapses/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Nefropatia Associada a AIDS/induzido quimicamente , Nefropatia Associada a AIDS/metabolismo , Nefropatia Associada a AIDS/patologia , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dendritos/metabolismo , Dendritos/patologia , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/metabolismo , Morfina/antagonistas & inibidores , N-Metilaspartato/farmacologia , Cultura Primária de Células , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/genética , Rianodina/farmacologia , Sinapses/metabolismo , Sinapses/patologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/antagonistas & inibidores , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
7.
Alcohol Clin Exp Res ; 39(4): 650-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25833026

RESUMO

BACKGROUND: Prefrontal cortex (PFC) dysfunction is believed to contribute to the transition from controlled substance use to abuse. Because astrocytes have been suggested to play a key role in the development and maintenance of drug-seeking behaviors, we sought to determine whether PFC astrocytes are affected by ethanol (EtOH) self-administration. METHODS: EtOH consumption was modeled in rats by 3 self-administration paradigms where EtOH was made concurrently available with water in the home cage either continuously (CEA) or intermittently (IEA). In the third paradigm, EtOH was only available in the operant chamber (OEA). To avoid the potential confound of acute EtOH effects, all rats were sacrificed after either 24-hour or 3-week abstinence. In all groups, the effect of EtOH consumption on PFC astrocytes was measured using unbiased stereological counting of cells expressing the astrocyte marker glial fibrillary acidic protein (GFAP). GFAP immunoreactivity commonly changes in response to pharmacological insult or injury. RESULTS: GFAP-positive astrocyte number increased in the prelimbic and anterior cingulate cortex regions of the PFC after IEA. No change was found in the infralimbic or orbitofrontal cortex after IEA. After 3-week abstinence, there was a reduction of astrocytes in the prelimbic and orbitofrontal cortex of the CEA cohort as well as a reduction in the orbitofrontal cortex of the OEA cohort. CONCLUSIONS: These findings demonstrate that discrete PFC subregions contain GFAP-positive astrocyte populations that respond differentially to distinct EtOH consumption paradigms. A better understanding of how specific astrocyte populations uniquely adapt to EtOH consumption could provide insight for targeted therapeutic interventions.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Etanol/administração & dosagem , Etanol/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Contagem de Células , Giro do Cíngulo/citologia , Giro do Cíngulo/efeitos dos fármacos , Masculino , Ratos , Autoadministração
8.
Neurosignals ; 22(2): 65-78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25300231

RESUMO

The small- and intermediate-conductance Ca(2+)-activated potassium (SK/IK) channels play important roles in the regulation of excitable cells in both the central nervous and cardiovascular systems. Evidence from animal models has implicated SK/IK channels in neurological conditions such as ataxia and alcohol use disorders. Further, genome-wide association studies have suggested that cardiovascular abnormalities such as arrhythmias and hypertension are associated with single nucleotide polymorphisms that occur within the genes encoding the SK/IK channels. The Ca(2+) sensitivity of the SK/IK channels stems from a constitutively bound Ca(2+)-binding protein: calmodulin. Small-molecule positive modulators of SK/IK channels have been developed over the past decade, and recent structural studies have revealed that the binding pocket of these positive modulators is located at the interface between the channel and calmodulin. SK/IK channel positive modulators can potentiate channel activity by enhancing the coupling between Ca(2+) sensing via calmodulin and mechanical opening of the channel. Here, we review binding pocket studies that have provided structural insight into the mechanism of action for SK/IK channel positive modulators. These studies lay the foundation for structure-based drug discovery efforts that can identify novel SK/IK channel positive modulators.


Assuntos
Calmodulina/metabolismo , Sistema Cardiovascular/metabolismo , Sistema Nervoso Central/metabolismo , Descoberta de Drogas , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Humanos
9.
PLoS Genet ; 6(8)2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20714347

RESUMO

The mechanisms by which ethanol and inhaled anesthetics influence the nervous system are poorly understood. Here we describe the positional cloning and characterization of a new mouse mutation isolated in an N-ethyl-N-nitrosourea (ENU) forward mutagenesis screen for animals with enhanced locomotor activity. This allele, Lightweight (Lwt), disrupts the homolog of the Caenorhabditis elegans (C. elegans) unc-79 gene. While Lwt/Lwt homozygotes are perinatal lethal, Lightweight heterozygotes are dramatically hypersensitive to acute ethanol exposure. Experiments in C. elegans demonstrate a conserved hypersensitivity to ethanol in unc-79 mutants and extend this observation to the related unc-80 mutant and nca-1;nca-2 double mutants. Lightweight heterozygotes also exhibit an altered response to the anesthetic isoflurane, reminiscent of unc-79 invertebrate mutant phenotypes. Consistent with our initial mapping results, Lightweight heterozygotes are mildly hyperactive when exposed to a novel environment and are smaller than wild-type animals. In addition, Lightweight heterozygotes exhibit increased food consumption yet have a leaner body composition. Interestingly, Lightweight heterozygotes voluntarily consume more ethanol than wild-type littermates. The acute hypersensitivity to and increased voluntary consumption of ethanol observed in Lightweight heterozygous mice in combination with the observed hypersensitivity to ethanol in C. elegans unc-79, unc-80, and nca-1;nca-2 double mutants suggests a novel conserved pathway that might influence alcohol-related behaviors in humans.


Assuntos
Peso Corporal , Etanol/metabolismo , Camundongos/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Feminino , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Proteínas de Membrana , Camundongos/genética , Camundongos/crescimento & desenvolvimento , Camundongos/fisiologia , Camundongos Endogâmicos C57BL , Atividade Motora
10.
PLoS One ; 18(9): e0291330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682977

RESUMO

Some health concerns are often not identified until late into clinical development of drugs, which can place participants and patients at significant risk. For example, the United States Food and Drug Administration (FDA) labeled the xanthine oxidase inhibitor febuxostat with a"boxed" warning regarding an increased risk of cardiovascular death, and this safety risk was only identified during Phase 3b clinical trials after its approval. Thus, better preclinical assessment of drug efficacy and safety are needed to accurately evaluate candidate drug risk earlier in discovery and development. This study explored whether an in vitro vascular model incorporating human vascular cells and hemodynamics could be used to differentiate the potential cardiovascular risk associated with molecules that have similar on-target mechanisms of action. We compared the transcriptomic responses induced by febuxostat and other xanthine oxidase inhibitors to a database of 111 different compounds profiled in the human vascular model. Of the 111 compounds in the database, 107 are clinical-stage and 33 are FDA-labelled for increased cardiovascular risk. Febuxostat induces pathway-level regulation that has high similarity to the set of drugs FDA-labelled for increased cardiovascular risk. These results were replicated with a febuxostat analog, but not another structurally distinct xanthine oxidase inhibitor that does not confer cardiovascular risk. Together, these data suggest that the FDA warning for febuxostat stems from the chemical structure of the medication itself, rather than the target, xanthine oxidase. Importantly, these data indicate that cardiovascular risk can be evaluated in this in vitro human vascular model, which may facilitate understanding the drug candidate safety profile earlier in discovery and development.


Assuntos
Doenças Cardiovasculares , Estados Unidos , Humanos , Doenças Cardiovasculares/induzido quimicamente , Xantina Oxidase , Febuxostat/farmacologia , Fatores de Risco , Inibidores Enzimáticos/efeitos adversos , Fatores de Risco de Doenças Cardíacas
11.
Acta Biomater ; 170: 250-259, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659730

RESUMO

The interactions between polymers and the immune system remains poorly controlled. In some instances, the immune system can produce antibodies specific to polymer constituents. Indeed, roughly half of pegloticase patients without immunomodulation develop high titers of anti-PEG antibodies (APA) to the PEG polymers on pegloticase, which then quickly clear the drug from circulation and render the gout treatment ineffective. Here, using pegloticase as a model drug, we show that addition of high molecular weight (MW) free (unconjugated) PEG to pegloticase allows us to control the immunogenicity and mitigates APA induction in mice. Compared to pegloticase mixed with saline, mice repeatedly dosed with pegloticase containing different MW or amount of free PEG possessed 4- to 12- fold lower anti-PEG IgG, and 6- to 10- fold lower anti-PEG IgM, after 3 rounds of pegloticase dosed every 2 weeks. The markedly reduced APA levels, together with competitive inhibition by free PEG, restored the prolonged circulation of pegloticase to levels observed in APA-naïve animals. In contrast, mice with pegloticase-induced APA eliminated nearly all pegloticase from the circulation within just four hours post-injection. These results support the growing literature demonstrating free PEG may effectively suppress drug-induced APA, which in turn may offer sustained therapeutic benefits without requiring broad immunomodulation. We also showed free PEG effectively blocked the PEGylated protein from binding with cells expressing PEG-specific B cell receptors. It provides a template of how we may be able to tune the interactions and immunogenicity of other polymer-modified therapeutics. STATEMENT OF SIGNIFICANCE: A major challenge with engineering materials for drug delivery is their interactions with the immune system. For instance, our body can produce high levels of anti-PEG antibodies (APA). Unfortunately, the field currently lack tools to limit immunostimulation or overcome pre-existing anti-PEG antibodies, without using broad immunosuppression. Here, we showed that simply introducing free PEG into a clinical formulation of PEG-uricase can effectively limit induction of anti-PEG antibodies, and restore their prolonged circulation upon repeated dosing. Our work offers a readily translatable method to safely and effectively restore the use PEG-drugs in patients with PEG-immunity, and provides a template to use unconjugated polymers with low immunogenicity to regulate interactions with the immune system for other polymer-modified therapeutics.


Assuntos
Anticorpos , Urato Oxidase , Humanos , Animais , Camundongos , Peso Molecular , Urato Oxidase/uso terapêutico , Anticorpos/farmacologia , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico
12.
Proc Natl Acad Sci U S A ; 105(34): 12533-8, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18719114

RESUMO

Approximately 90% of alcoholics relapse within 4 years, in part because of an enhanced motivation to seek alcohol (EtOH). A novel G protein modulator (Gpsm1/AGS3) was up-regulated in the rat nucleus accumbens core (NAcore) but not in other limbic nuclei during abstinence from operant EtOH self-administration. Furthermore, NAcore AGS3 knockdown reduced EtOH seeking to pre-abstinence levels in a novel rat model of compulsive, human EtOH seeking. AGS3 can both inhibit G protein G i alpha-mediated signaling and stimulate G betagamma-mediated signaling. Accordingly, sequestration of G betagamma, but not G i alpha knockdown, significantly reduced EtOH seeking to pre-abstinence levels. Thus, AGS3 and G betagamma are hypothesized to gate the uncontrolled motivation to seek EtOH during abstinence. AGS3 up-regulation during abstinence may be a key determinant of the transition from social consumption to compulsion-like seeking during relapse.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Núcleo Accumbens/metabolismo , Animais , Etanol , Reguladores de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Masculino , Núcleo Accumbens/química , Ratos , Ratos Wistar , Transdução de Sinais , Regulação para Cima
13.
J Neurosci ; 29(36): 11215-25, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19741128

RESUMO

Orexin A/hypocretin-1 (oxA/hcrt-1) is known to be a modulator of dopamine-dependent neuronal activity and behaviors. However, the role of this system in driving motivated behaviors remains poorly understood. Here, we show that orexin/hypocretin receptor-1 (ox/hcrt-1R) signaling is important for motivation for highly salient, positive reinforcement. Blockade of ox/hcrt-1R selectively reduced work to self-administer cocaine or high fat food pellets. Moreover, oxA/hcrt-1 strengthened presynaptic glutamatergic inputs to the ventral tegmental area (VTA) only in cocaine or high fat self-administering rats. Finally, oxA/hcrt-1-mediated excitatory synaptic transmission onto VTA neurons was not potentiated following an arousing, aversive stimulus, suggesting that oxA/hcrt-1-mediated glutamatergic synaptic transmission was potentiated selectively with highly salient positive reinforcers. These experiments provide evidence for a selective role of oxA/hcrt-1 signaling in motivation for highly salient reinforcers and may represent a unique opportunity to design novel therapies that selectively reduce excessive drive to consume positive reinforcers of high salience.


Assuntos
Comportamento de Escolha/fisiologia , Motivação , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neuropeptídeos/fisiologia , Reforço Psicológico , Animais , Benzoxazóis/farmacologia , Comportamento de Escolha/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/prevenção & controle , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Masculino , Naftiridinas , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/fisiologia , Receptores de Orexina , Orexinas , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Neuropeptídeos/antagonistas & inibidores , Ureia/análogos & derivados , Ureia/farmacologia
14.
Nat Neurosci ; 9(7): 868-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16732275

RESUMO

The core and shell of the nucleus accumbens have critical, differential roles in drug-dependent behaviors. Here we show that operant cocaine self-administration inhibits long-term depression (LTD) in both structures after 1 d of abstinence. However, after 21 d of abstinence, LTD was abolished exclusively in the nucleus accumbens core of cocaine self-administering rats, suggesting that voluntary cocaine self-administration induced long-lasting neuroadaptations in the core that could underlie drug-seeking behavior and relapse.


Assuntos
Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Núcleo Accumbens/citologia , Animais , Comportamento Aditivo/fisiopatologia , Comportamento Animal , Condicionamento Operante/efeitos dos fármacos , Estimulação Elétrica/métodos , Técnicas In Vitro , Masculino , Ratos , Ratos Sprague-Dawley , Esquema de Reforço , Reforço Psicológico , Autoadministração , Fatores de Tempo
15.
Neurobiol Pain ; 7: 100039, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31909296

RESUMO

Previous studies have shown that oral administration of the NMDAR modulator NYX-2925 alleviates pain in several animal models of neuropathic pain and this appears to be through mPFC, but not spinal, mediated mechanisms. While much is known about the impact of neuropathic pain on NMDAR-mediated signaling in the spinal cord, limited studies have focused on the brain. In the current study, we assess signaling changes associated with NMDAR-mediated plasticity in the mPFC and the impact of NYX-2925 administration on the normalization of these signaling changes. We found a decrease in activated Src levels in the mPFC of animals with chronic constriction injury (CCI) of the sciatic nerve. While Src mediated activation of NMDARs was also decreased in CCI animals, the main NMDAR phosphorylation site of CAMKII was not affected. This is in opposition to what has been found in the spinal cord, where both Src and CAMKII activation are increased. Oral administration of NYX-2925 restored levels of activated Src and Src phosphorylation sites on GluN2A and GluN2B in the mPFC, with no effect on activated CAMKII levels. The analgesic effect of NYX-2925 appears dependent on this restoration of Src activation in the mPFC, as co-administering Src activation inhibitors prevented the NYX-2925 analgesic effect. Overall, these data suggest that NMDAR-mediated signaling plays a key role in neuropathic pain, albeit in different directions in the spinal cord vs. the mPFC. Furthermore, the analgesic effect of NYX-2925 appears to involve a restoration of NMDAR-mediated signaling in the mPFC.

16.
Neuron ; 42(2): 269-81, 2004 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15091342

RESUMO

Chronic cocaine administration reduces G protein signaling efficacy. Here, we report that the expression of AGS3, which binds to GialphaGDP and inhibits GDP dissociation, was upregulated in the prefrontal cortex (PFC) during late withdrawal from repeated cocaine administration. Increased AGS3 was mimicked in the PFC of drug-naive rats by microinjecting a peptide containing the Gialpha binding domain (GPR) of AGS3 fused to the cell permeability domain of HIV-Tat. Infusion of Tat-GPR mimicked the phenotype of chronic cocaine-treated rats by manifesting sensitized locomotor behavior and drug seeking and by increasing glutamate transmission in nucleus accumbens. By preventing cocaine withdrawal-induced AGS3 expression with antisense oligonucleotides, signaling through Gialpha was normalized, and both cocaine-induced relapse to drug seeking and locomotor sensitization were prevented. When antisense oligonucleotide infusion was discontinued, drug seeking and sensitization were restored. It is proposed that AGS3 gates the expression of cocaine-induced plasticity by regulating G protein signaling in the PFC.


Assuntos
Comportamento Aditivo/metabolismo , Proteínas de Transporte/biossíntese , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Animais , Proteínas de Transporte/antagonistas & inibidores , Cocaína/administração & dosagem , Relação Dose-Resposta a Droga , Masculino , Oligonucleotídeos Antissenso/farmacologia , Ratos , Autoadministração , Síndrome de Abstinência a Substâncias/metabolismo
17.
Neuropsychopharmacology ; 43(13): 2521-2531, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30188517

RESUMO

Understanding how ethanol actions on brain signal transduction and gene expression lead to excessive consumption and addiction could identify new treatments for alcohol dependence. We previously identified glycogen synthase kinase 3-beta (Gsk3b) as a member of a highly ethanol-responsive gene network in mouse medial prefrontal cortex (mPFC). Gsk3b has been implicated in dendritic function, synaptic plasticity and behavioral responses to other drugs of abuse. Here, we investigate Gsk3b in rodent models of ethanol consumption and as a risk factor for human alcohol dependence. Stereotactic viral vector gene delivery overexpression of Gsk3b in mouse mPFC increased 2-bottle choice ethanol consumption, which was blocked by lithium, a known GSK3B inhibitor. Further, Gsk3b overexpression increased anxiety-like behavior following abstinence from ethanol. Protein or mRNA expression studies following Gsk3b over-expression identified synaptojanin 2, brain-derived neurotrophic factor and the neuropeptide Y Y5 receptor as potential downstream factors altering ethanol behaviors. Rat operant studies showed that selective pharmacologic inhibition of GSK3B with TDZD-8 dose-dependently decreased motivation to self-administer ethanol and sucrose and selectively blocked ethanol relapse-like behavior. In set-based and gene-wise genetic association analysis, a GSK3b-centric gene expression network had significant genetic associations, at a gene and network level, with risk for alcohol dependence in humans. These mutually reinforcing cross-species findings implicate GSK3B in neurobiological mechanisms controlling ethanol consumption, and as both a potential risk factor and therapeutic target for alcohol dependence.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/enzimologia , Alcoolismo/genética , Glicogênio Sintase Quinase 3 beta/biossíntese , Glicogênio Sintase Quinase 3 beta/genética , Abstinência de Álcool/psicologia , Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/psicologia , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Fatores de Risco , Autoadministração , Especificidade da Espécie , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico
18.
Psychopharmacology (Berl) ; 190(4): 415-31, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17225170

RESUMO

RATIONALE: The Scheduled High Alcohol Consumption (SHAC) binge drinking model is a simple, partial murine model with which to investigate some of the neurobiological underpinnings of alcoholism. OBJECTIVES: The SHAC model was used to characterize monoamine and amino acid adaptations produced in the nucleus accumbens (NAC) by repeated bouts of high alcohol consumption. METHODS: In vivo microdialysis was conducted in the NAC of C57BL/6J (B6) mice during consumption of water, a 5% alcohol (v/v) solution for the first time (SHAC1) or a 5% alcohol solution for the sixth time (SHAC6). A second set of microdialysis experiments assessed the neurotransmitter response to an alcohol challenge injection (1.5 or 2 g/kg, IP). RESULTS: In both drinking experiments, SHAC1 and SHAC6 mice consumed comparable amounts of alcohol during the 40-min period of alcohol availability (approximately 1.5 g/kg) and total fluid intake was similar between water and SHAC1/6 mice. Despite the similarity in alcohol consumption, alcohol-mediated increases in the extracellular concentration of GABA and serotonin were reduced, but glutamate was increased in the NAC of SHAC6 mice, relative to SHAC1 animals. No differences were observed in extracellular dopamine between SHAC1 and SHAC6 mice during alcohol consumption. After alcohol injection, SHAC6 mice also exhibited sensitized glutamate release, but did not differ from water or SHAC1 animals for any of the other neurotransmitters examined. Brain alcohol concentrations did not differ between groups after injection. CONCLUSIONS: Repeated bouts of high alcohol consumption induce an imbalance between inhibitory and excitatory neurotransmission within the NAC that may drive excessive drinking behavior.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/metabolismo , Núcleo Accumbens/metabolismo , Alcoolismo/psicologia , Animais , Depressores do Sistema Nervoso Central , Modelos Animais de Doenças , Dopamina/metabolismo , Etanol , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise , Reprodutibilidade dos Testes , Serotonina/metabolismo , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
19.
Psychopharmacology (Berl) ; 195(3): 397-406, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17764007

RESUMO

RATIONALE: Acamprosate (calcium acetylhomotaurinate) is a glutamatergic neuromodulator used for the treatment of alcoholism, but its potential efficacy in the treatment of psychostimulant addiction has not been explored. OBJECTIVES: The purpose of this study was to assess the effects of acamprosate on cocaine-stimulated locomotor activity, cocaine self-administration, and cue- and cocaine-induced reinstatement of cocaine-seeking behavior. MATERIALS AND METHODS: All experiments utilized once-daily treatment for 5 consecutive days. First, the effects of saline or acamprosate (100, 300, or 500 mg/kg intraperitoneally) on body weight were examined. On the last day of treatment, locomotor activity was assessed before and after drug treatment, after which all animals received an acute challenge of cocaine (10 mg/kg). Next, a separate group of rats were trained to intravenously (IV) self-administer cocaine (0.6 mg/kg per infusion), subjected to extinction procedures, and then tested for effects of acamprosate on cue- or cocaine-induced reinstatement. A third group of rats was trained to self-administer cocaine as described above and were treated with saline or acamprosate before daily IV self-administration sessions. RESULTS: Repeated administration of 500 mg/kg acamprosate but not lower doses produced reductions in both body weight and spontaneous locomotor activity, and thus this dose was not tested further. Acamprosate at 300 mg/kg but not 100 mg/kg attenuated both cocaine- and cue-induced reinstatement without altering baseline patterns of cocaine self-administration or cocaine-stimulated hyperlocomotion. CONCLUSIONS: Acamprosate attenuates both drug- and cue-induced reinstatement of cocaine-seeking behavior, suggesting that this compound may serve as a potential treatment for preventing relapse in cocaine-addicted humans.


Assuntos
Dissuasores de Álcool/farmacologia , Transtornos Relacionados ao Uso de Cocaína/prevenção & controle , Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Sinais (Psicologia) , Taurina/análogos & derivados , Acamprosato , Dissuasores de Álcool/administração & dosagem , Animais , Comportamento Aditivo/metabolismo , Comportamento Aditivo/psicologia , Transtornos Relacionados ao Uso de Cocaína/psicologia , Relação Dose-Resposta a Droga , Extinção Psicológica/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recidiva , Autoadministração , Taurina/administração & dosagem , Taurina/farmacologia
20.
Drug Alcohol Depend ; 180: 241-259, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938182

RESUMO

BACKGROUND: Substance use disorder (SUD) remains a significant public health issue. A greater understanding of how genes and environment interact to regulate phenotypes comprising SUD will facilitate directed treatments and prevention. METHODS: The literature studying the neurobiological correlates of SUD with a focus on the genetic and environmental influences underlying these mechanisms was reviewed. Results from twin/family, human genetic association, gene-environment interaction, epigenetic literature, phenome-wide association studies are summarized for alcohol, nicotine, cannabinoids, cocaine, and opioids. RESULTS: There are substantial genetic influences on SUD that are expected to influence multiple neurotransmission pathways, and these influences are particularly important within the dopaminergic system. Genetic influences involved in other aspects of SUD etiology including drug processing and metabolism are also identified. Studies of gene-environment interaction emphasize the importance of environmental context in SUD. Epigenetic studies indicate drug-specific changes in gene expression as well as differences in gene expression related to the use of multiple substances. Further, gene expression is expected to differ by stage of SUD such as substance initiation versus chronic substance use. While a substantial literature has developed for alcohol and nicotine use disorders, there is comparatively less information for other commonly abused substances. CONCLUSIONS: A better understanding of genetically-mediated mechanisms involved in the neurobiology of SUD provides increased opportunity to develop behavioral and biologically based treatment and prevention of SUD.


Assuntos
Alcoolismo/epidemiologia , Epidemiologia Molecular , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Tabagismo/epidemiologia , Interação Gene-Ambiente , Humanos , Fenótipo , Gêmeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA