Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 16(10): 3012-29, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24107237

RESUMO

Nitrogen (N2) fixation was investigated at Mound 12, Costa Rica, to determine its spatial distribution and biogeochemical controls in deep-sea methane seep sediment. Using (15)N2 tracer experiments and isotope ratio mass spectrometry analysis, we observed that seep N2 fixation is methane-dependent, and that N2 fixation rates peak in a narrow sediment depth horizon corresponding to increased abundance of aggregates of anaerobic methanotrophic archaea (ANME-2) and sulfate-reducing bacteria (SRB). Using fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS), we directly measured (15)N2 uptake by ANME-2/SRB aggregates (n = 26) and observed maximum (15)N incorporation within ANME-2-dominated areas of the aggregates, consistent with previous analyses. NanoSIMS analysis of single cells (n = 34) from the same microcosm experiment revealed no (15)N2 uptake. Together, these observations suggest that ANME-2, and possibly physically associated SRB, mediate the majority of new nitrogen production within the seep ecosystem. ANME-2 diazotrophy was observed while in association with members of two distinct orders of SRB: Desulfobacteraceae and Desulfobulbaceae. The rate of N2 fixation per unit volume biomass was independent of the identity of the associated SRB, aggregate size and morphology. Our results show that the distribution of seep N2 fixation is heterogeneous, laterally and with depth in the sediment, and is likely influenced by chemical gradients affecting the abundance and activity of ANME-2/SRB aggregates.


Assuntos
Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Fixação de Nitrogênio , Compostos de Amônio/análise , Archaea/classificação , Deltaproteobacteria/metabolismo , Ecossistema , Nitratos/análise , Nitritos/análise , Filogenia , Água do Mar/química
2.
Astrobiology ; 22(8): 1009-1028, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35549348

RESUMO

Humanity's search for extraterrestrial life is a modern manifestation of the exploratory and curious nature that has led us through millennia of scientific discoveries. With the ongoing exploration of extraterrestrial bodies, the potential for discovery of extraterrestrial life has expanded. We may better inform this search through an understanding of how life persists and flourishes on Earth in a myriad of environmental extremes. A significant proportion of our knowledge of extremophiles on Earth comes from studies on deep ocean life. Here, we review and synthesize the range of environmental extremes observed in the deep sea, the life that persists in these extreme conditions, and the biological adaptations utilized by these remarkable life-forms. We also review confirmed and predicted extraterrestrial oceans in our solar system and propose deep-sea sites that may serve as planetary field analog environments. We show that the clever ingenuity of evolution under deep-sea conditions suggests that the plausibility of extraterrestrial life is much greater than previously thought.


Assuntos
Extremófilos , Planeta Terra , Ecossistema , Exobiologia , Oceanos e Mares
3.
Sci Adv ; 5(2): eaav1024, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30801015

RESUMO

Marine sediments host an unexpectedly large microbial biosphere, suggesting unique microbial mechanisms for surviving burial and slow metabolic turnover. Although dormancy is generally considered an important survival strategy, its specific role in subsurface sediments remains unclear. We quantified dormant bacterial endospores in 331 marine sediment samples from diverse depositional types and geographical origins. The abundance of endospores relative to vegetative cells increased with burial depth and endospores became dominant below 25 m, with an estimated population of 2.5 × 1028 to 1.9 × 1029 endospores in the uppermost kilometer of sediment and a corresponding biomass carbon of 4.6 to 35 Pg surpassing that of vegetative cells. Our data further identify distinct endospore subgroups with divergent resistance to burial and aging. Endospores may shape the deep biosphere by providing a core population for colonization of new habitats and/or through low-frequency germination to sustain slow growth in this environment.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Esporos Bacterianos/metabolismo , Microbiologia da Água
4.
Science ; 344(6186): 889-91, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24812207

RESUMO

Sulfate reduction is a globally important redox process in marine sediments, yet global rates are poorly quantified. We developed an artificial neural network trained with 199 sulfate profiles, constrained with geomorphological and geochemical maps to estimate global sulfate-reduction rate distributions. Globally, 11.3 teramoles of sulfate are reduced yearly (~15% of previous estimates), accounting for the oxidation of 12 to 29% of the organic carbon flux to the sea floor. Combined with global cell distributions in marine sediments, these results indicate a strong contrast in sub-sea-floor prokaryote habitats: In continental margins, global cell numbers in sulfate-depleted sediment exceed those in the overlying sulfate-bearing sediment by one order of magnitude, whereas in the abyss, most life occurs in oxic and/or sulfate-reducing sediments.


Assuntos
Carbono/metabolismo , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Sulfatos/metabolismo , Ecossistema , Redes Neurais de Computação , Oxirredução
5.
Front Microbiol ; 3: 377, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23112796

RESUMO

We measured potential nitrate removal and denitrification rates in hydrothermally altered sediments inhabited by Beggiatoa mats and adjacent brown oil stained sediments from the Guaymas Basin, Gulf of California. Sediments with Beggiatoa maintained slightly higher rates of potential denitrification than did brown sediments at 31.2 ± 12.1 versus 21.9 ± 1.4 µM N day(-1), respectively. In contrast, the nitrate removal rates in brown sediments were higher than those observed in mat-hosting sediments at 418 ± 145 versus 174 ± 74 µM N day(-1), respectively. Additional experiments were conducted to assess the responses of denitrifying communities to environmental factors [i.e., nitrate, sulfide, and dissolved organic carbon (DOC) concentration)]. The denitrifying community had a high affinity for nitrate (K(m) = 137 ± 91 µM NO3-), in comparison to other environmental communities of denitrifiers, and was capable of high maximum rates of denitrification (V(max) = 1164 ± 153 µM N day(-1)). The presence of sulfide resulted in significantly lower denitrification rates. Microorganisms with the potential to perform denitrification were assessed in these sediments using the bacterial 16S rRNA gene and nitrous oxide reductase (nosZ) functional gene libraries. The bacterial 16S rRNA gene clone library was dominated by Epsilonproteobacteria (38%), some of which (e.g., Sulfurimonas sp.) have a potential for sulfide-dependent denitrification. The nosZ clone library did not contain clones similar to pure culture denitrifiers; these clones were most closely associated with environmental clones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA