Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(24): e111115, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36215693

RESUMO

Mitochondria and peroxisomes are closely related metabolic organelles, both in terms of origin and in terms of function. Mitochondria and peroxisomes can also be turned over by autophagy, in processes termed mitophagy and pexophagy, respectively. However, despite their close relationship, it is not known if both organelles are turned over under similar conditions, and if so, how this might be coordinated molecularly. Here, we find that multiple selective autophagy pathways are activated upon iron chelation and show that mitophagy and pexophagy occur in a BNIP3L/NIX-dependent manner. We reveal that the outer mitochondrial membrane-anchored NIX protein, previously described as a mitophagy receptor, also independently localises to peroxisomes and drives pexophagy. We show this process happens in vivo, with mouse tissue that lacks NIX having a higher peroxisomal content. We further show that pexophagy is stimulated under the same physiological conditions that activate mitophagy, including cardiomyocyte and erythrocyte differentiation. Taken together, our work uncovers a dual role for NIX, not only in mitophagy but also in pexophagy, thus illustrating the interconnection between selective autophagy pathways.


Assuntos
Macroautofagia , Mitofagia , Camundongos , Animais , Peroxissomos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
2.
EMBO J ; 40(19): e108863, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459017

RESUMO

Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.


Assuntos
Autofagia , Suscetibilidade a Doenças , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Autofagia/imunologia , Biomarcadores , Regulação da Expressão Gênica , Predisposição Genética para Doença , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Especificidade de Órgãos , Transdução de Sinais
3.
EMBO Rep ; 24(7): e56131, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37184882

RESUMO

In addition to triggering humoral responses, conventional B cells have been described in vitro to cross-present exogenous antigens activating naïve CD8+ T cells. Nevertheless, the way B cells capture these exogenous antigens and the physiological roles of B cell-mediated cross-presentation remain poorly explored. Here, we show that B cells capture bacteria by trans-phagocytosis from previously infected dendritic cells (DC) when they are in close contact. Bacterial encounter "instructs" the B cells to acquire antigen cross-presentation abilities, in a process that involves autophagy. Bacteria-instructed B cells, henceforth referred to as BacB cells, rapidly degrade phagocytosed bacteria, process bacterial antigens and cross-prime naïve CD8+ T cells which differentiate into specific cytotoxic cells that efficiently control bacterial infections. Moreover, a proof-of-concept experiment shows that BacB cells that have captured bacteria expressing tumor antigens could be useful as novel cellular immunotherapies against cancer.


Assuntos
Linfócitos T CD8-Positivos , Células Dendríticas , Apresentação de Antígeno , Apresentação Cruzada , Antígenos de Bactérias
4.
J Neuroinflammation ; 20(1): 207, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37691115

RESUMO

Vascular endothelial function is challenged during cerebral ischemia and reperfusion. The endothelial responses are involved in inflammatory leukocyte attraction, adhesion and infiltration, blood-brain barrier leakage, and angiogenesis. This study investigated gene expression changes in brain endothelial cells after acute ischemic stroke using transcriptomics and translatomics. We isolated brain endothelial mRNA by: (i) translating ribosome affinity purification, enabling immunoprecipitation of brain endothelial ribosome-attached mRNA for translatome sequencing and (ii) isolating CD31+ endothelial cells by fluorescence-activating cell sorting for classical transcriptomic analysis. Both techniques revealed similar pathways regulated by ischemia but they showed specific differences in some transcripts derived from non-endothelial cells. We defined a gene set characterizing the endothelial response to acute stroke (24h) by selecting the differentially expressed genes common to both techniques, thus corresponding with the translatome and minimizing non-endothelial mRNA contamination. Enriched pathways were related to inflammation and immunoregulation, angiogenesis, extracellular matrix, oxidative stress, and lipid trafficking and storage. We validated, by flow cytometry and immunofluorescence, the protein expression of several genes encoding cell surface proteins. The inflammatory response was associated with the endothelial upregulation of genes related to lipid storage functions and we identified lipid droplet biogenesis in the endothelial cells after ischemia. The study reports a robust translatomic signature of brain endothelial cells after acute stroke and identifies enrichment in novel pathways involved in membrane signaling and lipid storage. Altogether these results highlight the endothelial contribution to the inflammatory response, and identify novel molecules that could be targets to improve vascular function after ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/genética , Transcriptoma , Encéfalo , Acidente Vascular Cerebral/genética , Lipídeos
5.
J Enzyme Inhib Med Chem ; 38(1): 2153841, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36637025

RESUMO

SGK1 is a serine/threonine kinase involved in several neurodegenerative-related pathways such as apoptosis, neuroinflammation, ionic channel regulation, and autophagy, among others. Despite its potential role as a pharmacological target against this kind of diseases, there are no reported inhibitors able to cross the BBB so far, being a field yet to be explored. In this context, a structure-based virtual screening against this kinase was performed, pointing out the deazapurine moiety as an interesting and easy-to-derivatize scaffold. Moreover, these inhibitors are able to i) exert neuroprotection in an in vitro model of AD and ii) block mitophagy in a PRKN-independent manner, reinforcing the hypothesis of SGK1 inhibitors as neuroprotective chemical tools.


Assuntos
Fármacos Neuroprotetores , Proteínas Serina-Treonina Quinases , Apoptose , Fármacos Neuroprotetores/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores
6.
Nature ; 592(7855): 509-510, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854223
7.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293534

RESUMO

Mitophagy is the selective degradation of mitochondria by autophagy. It promotes the turnover of mitochondria and prevents the accumulation of dysfunctional mitochondria, which can lead to cellular degeneration. Mitophagy is known to be altered in several pathological conditions, especially in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). We recently demonstrated an increase in autophagy flux in lymphoblasts from ALS patients bearing a mutation in SOD1. Thus, the identification of mitophagy inhibitors may be a therapeutic option to recover mitochondrial homeostasis. Here, using a phenotypic mitophagy assay, we identified a new mitophagy inhibitor, the small molecule named IGS2.7 from the MBC library. Interestingly, the treatment of different cellular and in vivo models of ALS with mutations on SOD1 and TARDBP with this inhibitor restores autophagy to control levels. These results point mitophagy inhibitors, especially IGS2.7, to a new therapeutic approach for familial ALS patients.


Assuntos
Esclerose Lateral Amiotrófica , Mitofagia , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/genética , Mutação
8.
EMBO J ; 36(12): 1688-1706, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28465321

RESUMO

Retinal ganglion cells (RGCs) are the sole projecting neurons of the retina and their axons form the optic nerve. Here, we show that embryogenesis-associated mouse RGC differentiation depends on mitophagy, the programmed autophagic clearance of mitochondria. The elimination of mitochondria during RGC differentiation was coupled to a metabolic shift with increased lactate production and elevated expression of glycolytic enzymes at the mRNA level. Pharmacological and genetic inhibition of either mitophagy or glycolysis consistently inhibited RGC differentiation. Local hypoxia triggered expression of the mitophagy regulator BCL2/adenovirus E1B 19-kDa-interacting protein 3-like (BNIP3L, best known as NIX) at peak RGC differentiation. Retinas from NIX-deficient mice displayed increased mitochondrial mass, reduced expression of glycolytic enzymes and decreased neuronal differentiation. Similarly, we provide evidence that NIX-dependent mitophagy contributes to mitochondrial elimination during macrophage polarization towards the proinflammatory and more glycolytic M1 phenotype, but not to M2 macrophage differentiation, which primarily relies on oxidative phosphorylation. In summary, developmentally controlled mitophagy promotes a metabolic switch towards glycolysis, which in turn contributes to cellular differentiation in several distinct developmental contexts.


Assuntos
Diferenciação Celular , Glicólise , Mitofagia , Retina/embriologia , Células Ganglionares da Retina/fisiologia , Animais , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/metabolismo
9.
EMBO J ; 36(13): 1811-1836, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28596378

RESUMO

Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy-related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy-related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.


Assuntos
Autofagia , Terminologia como Assunto , Animais , Caenorhabditis elegans/fisiologia , Drosophila melanogaster/fisiologia , Redes Reguladoras de Genes , Camundongos , Saccharomyces cerevisiae/fisiologia
10.
Development ; 145(4)2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483129

RESUMO

Autophagy is a catabolic pathway by which cellular components are delivered to the lysosome for degradation and recycling. Autophagy serves as a crucial intracellular quality control and repair mechanism but is also involved in cell remodelling during development and cell differentiation. In addition, mitophagy, the process by which damaged mitochondria undergo autophagy, has emerged as key regulator of cell metabolism. In recent years, a number of studies have revealed roles for autophagy and mitophagy in the regulation of stem cells, which represent the origin for all tissues during embryonic and postnatal development, and contribute to tissue homeostasis and repair throughout adult life. Here, we review these studies, focussing on the latest evidence that supports the quality control, remodelling and metabolic functions of autophagy during the activation, self-renewal and differentiation of embryonic, adult and cancer stem cells.


Assuntos
Autofagia , Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Células-Tronco/fisiologia , Animais , Humanos
11.
J Immunol ; 202(6): 1715-1723, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30718295

RESUMO

The immunological synapse (IS) is a superstructure formed during T cell activation at the zone of contact between T cells and dendritic cells (DCs). The IS includes specific molecular components in the T cell and DCs sides that may result in different functionality. Most of the studies on the IS have focused on the T cell side of this structure and, in contrast, the information available on the IS of DCs is sparse. Autophagy is a cellular process involved in the clearance of damaged proteins and organelles via lysosomal degradation. Mitophagy is the selective autophagy of damaged mitochondria. In this study, it is shown that IS formation induces clustering of mitochondria in the IS of DCs and partial depolarization of these organelles. At the IS of the DCs also accumulate autophagy and mitophagy markers, even when the kinase complex mTORC1, an inhibitor of the autophagy, is active. Together the results presented indicate that IS formation induces local clustering of mitochondria and mitophagy, which could be a homeostatic mechanism to control the quality of mitochondria in this region. The data underline the complexity of the regulatory mechanisms operating in the IS of DCs.


Assuntos
Células Dendríticas/metabolismo , Sinapses Imunológicas/metabolismo , Mitocôndrias/metabolismo , Mitofagia/imunologia , Animais , Células Dendríticas/imunologia , Sinapses Imunológicas/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/imunologia
12.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809456

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurological condition where motor neurons (MNs) degenerate. Most of the ALS cases are sporadic (sALS), whereas 10% are hereditarily transmitted (fALS), among which mutations are found in the gene that codes for the enzyme superoxide dismutase 1 (SOD1). A central question in ALS field is whether causative mutations display selective alterations not found in sALS patients, or they converge on shared molecular pathways. To identify specific and common mechanisms for designing appropriate therapeutic interventions, we focused on the SOD1-mutated (SOD1-ALS) versus sALS patients. Since ALS pathology involves different cell types other than MNs, we generated lymphoblastoid cell lines (LCLs) from sALS and SOD1-ALS patients and healthy donors and investigated whether they show changes in oxidative stress, mitochondrial dysfunction, metabolic disturbances, the antioxidant NRF2 pathway, inflammatory profile, and autophagic flux. Both oxidative phosphorylation and glycolysis appear to be upregulated in lymphoblasts from sALS and SOD1-ALS. Our results indicate significant differences in NRF2/ARE pathway between sALS and SOD1-ALS lymphoblasts. Furthermore, levels of inflammatory cytokines and autophagic flux discriminate between sALS and SOD1-ALS lymphoblasts. Overall, different molecular mechanisms are involved in sALS and SOD1-ALS patients and thus, personalized medicine should be developed for each case.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/imunologia , Linfócitos/imunologia , Mutação/genética , Medicina de Precisão , Superóxido Dismutase-1/genética , Ácidos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Autofagia/genética , Linhagem Celular Transformada , Metabolismo Energético , Feminino , Heterozigoto , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Consumo de Oxigênio , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Superóxido Dismutase-1/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
13.
Traffic ; 19(12): 918-931, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30125440

RESUMO

Lysosomes are membrane-enclosed organelles that mediate the intracellular degradation of macromolecules. They play an essential role in calcium regulation and have emerged as key signaling hubs in controlling the nutrient response. Maintaining lysosomal integrity and function is therefore crucial for cellular homeostasis. Different forms of stress can induce lysosomal membrane permeabilization (LMP), resulting in the translocation to the cytoplasm of intralysosomal components, such as cathepsins, inducing lysosomal-dependent cell death (LDCD). Here, we review recent advances that have furthered our understanding of the molecular mechanisms of LMP and the methods used to detect it. We discuss several endolysosomal damage-response mechanisms that mediate the repair or elimination of compromised lysosomes and summarize the role of LMP and cathepsins in LDCD and other cell death pathways. Finally, with the emergence of lysosomes as promising therapeutic targets for several human diseases, we review a variety of therapeutic strategies that seek to either destabilize lysosomes or to maintain, enhance or restore lysosomal function.


Assuntos
Morte Celular , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Animais , Humanos , Permeabilidade
14.
Int J Mol Sci ; 21(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164182

RESUMO

Mitochondrial damage plays a prominent role in glaucoma. The only way cells can degrade whole mitochondria is via autophagy, in a process called mitophagy. Thus, studying mitophagy in the context of glaucoma is essential to understand the disease. Up to date limited tools are available for analyzing mitophagy in vivo. We have taken advantage of the mito-QC reporter, a recently generated mouse model that allows an accurate mitophagy assessment to fill this gap. We used primary RGCs and retinal explants derived from mito-QC mice to quantify mitophagy activation in vitro and ex vivo. We also analyzed mitophagy in retinal ganglion cells (RGCs), in vivo, using different mitophagy inducers, as well as after optic nerve crush (ONC) in mice, a commonly used surgical procedure to model glaucoma. Using mito-QC reporter we quantified mitophagy induced by several known inducers in primary RGCs in vitro, ex vivo and in vivo. We also found that RGCs were rescued from some glaucoma relevant stress factors by incubation with the iron chelator deferiprone (DFP). Thus, the mito-QC reporter-based model is a valuable tool for accurately analyzing mitophagy in the context of glaucoma.


Assuntos
Deferiprona/farmacologia , Genes Reporter , Glaucoma/metabolismo , Quelantes de Ferro/farmacologia , Mitocôndrias/metabolismo , Células Ganglionares da Retina/citologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Glaucoma/etiologia , Humanos , Camundongos , Mitofagia , Cultura Primária de Células , Ratos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo
15.
Biochem Soc Trans ; 46(2): 207-215, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29472365

RESUMO

Lysosomes are acidic organelles that contain hydrolytic enzymes that mediate the intracellular degradation of macromolecules. Damage of these organelles often results in lysosomal membrane permeabilization (LMP) and the release into the cytoplasm of the soluble lysosomal contents, which include proteolytic enzymes of the cathepsin family. This, in turn, activates several intracellular cascades that promote a type of regulated cell death, called lysosome-dependent cell death (LDCD). LDCD can be inhibited by pharmacological or genetic blockade of cathepsin activity, or by protecting the lysosomal membrane, thereby stabilizing the organelle. Lysosomal alterations are common in cancer cells and may increase the sensitivity of these cells to agents that promote LMP. In this review, we summarize recent findings supporting the use of LDCD as a means of killing cancer cells.


Assuntos
Morte Celular , Permeabilidade da Membrana Celular , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Neoplasias/patologia , Catepsinas/metabolismo , Linhagem Celular Tumoral , Humanos , Lisossomos/enzimologia
16.
Exp Eye Res ; 164: 37-45, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28827028

RESUMO

We investigated the feasibility and efficacy of using a specific sphingosine 1-phosphate (S1P1) receptor agonist, CYM-5442, to slow or block retinal ganglion cell (RGC) loss in endothelin-1 (ET-1) induced RGC loss. A single intravitreal injection of ET-1 (20pmol/ul), a potent vasoactive peptide that produces retinal vessels vasoconstriction, was used to induce and characterize RGC-specific cell death. CYM-5442 (1 mgr/kg) or vehicle was administered intraperitoneally for five consecutive days after ET-1-induced RGC loss. The functional extent of RGC loss injury was evaluated with pattern visual evoked potentials (VEP) and electroretinography. RGCs and retinal nerve fiber layer (RNFL) thickness were assessed in vivo using optical coherence tomography and ex vivo using Brn3a immunohistochemistry in flat-mounted retinas. ET-1 caused significant RGC loss and function loss one week after intravitreal injection. VEP showed preserved visual function after CYM-5442 administration compared to vehicle-treated animals (11.95 ± 0.86 µV vs 3.47 ± 1.20 µV, n = 12) (p < 0.05). RNFL was significantly thicker in the CYM treated-animals compared to the vehicle (93.62 ± 3.22 µm vs 77.72 ± 0.35 µm, n = 12) (p < 0.05). Furthermore, Brn3a immunohistochemistry validated this observation, showing significantly higher RGCs numbers in CYM treated rats than in the vehicle group (76,540 ± 303 vs 52,426 ± 1,932 cells/retina, n = 9) (p = 0.05). CYM-5442 administration was associated with significant retinal cleaved caspase-3 deactivation, indicating reduced apoptotic levels. The results of the present study further demonstrate the important role of S1P1 receptor agonists to lessen intravitreal ET-1 induced RGC loss.


Assuntos
Glaucoma/tratamento farmacológico , Indanos/farmacologia , Fármacos Neuroprotetores/farmacologia , Oxidiazóis/farmacologia , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Doenças Retinianas/tratamento farmacológico , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Eletrorretinografia , Endotelina-1/farmacologia , Potenciais Evocados Visuais , Estudos de Viabilidade , Imuno-Histoquímica , Injeções Intravítreas , Isquemia/tratamento farmacológico , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/patologia , Fibras Nervosas/fisiologia , Doenças do Nervo Óptico/tratamento farmacológico , Ratos , Ratos Wistar , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Fator de Transcrição Brn-3A/metabolismo
17.
Methods ; 75: 79-86, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25644445

RESUMO

Autophagy is a highly dynamic process that mediates the degradation of cellular constituents inside lysosomes. It is characterized by the formation of autophagosomes, double membrane organelles that engulf cytosolic components and organelles and degrade their contents upon fusion with lysosomes. Upregulation of autophagy in response to specific stimuli can be determined by evaluating autophagic flux. This is achieved by comparing the number of autophagosomes in the absence and presence of lysosomal inhibitors. While the determination of autophagic flux in isolated cells is well-documented, few studies have described its determination in tissues or in vivo. Here, we describe the evaluation of autophagic flux both in vivo and ex vivo in several tissues, after treatment with lysosomal inhibitors and exposure to classical autophagy-inducing stimuli. This method uses LC3 lipidation, as determined by Western blot, fluorescence microscopy and flow cytometry. Our findings demonstrate that autophagic flux can be evaluated in vivo and ex vivo in several tissues.


Assuntos
Autofagia/genética , Fígado/ultraestrutura , Microscopia de Fluorescência/métodos , Retina/ultraestrutura , Animais , Cerebelo/metabolismo , Cerebelo/ultraestrutura , Leupeptinas/química , Fígado/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Camundongos , Retina/metabolismo
19.
Autophagy ; 20(7): 1684-1686, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38411192

RESUMO

Loss of proteostasis and dysregulated mitochondrial function are part of the traditional hallmarks of aging, and in their last revision impaired macroautophagy and chronic inflammation are also included. Mitophagy is at the intersection of all these processes but whether it undergoes age-associated perturbations was not known. In our recent work, we performed a systematic and systemic analysis of mitolysosome levels in mice and found that, despite the already-known decrease in nonselective macroautophagy, mitophagy remains stable or increases upon aging in all tissues analyzed and is mediated by the PINK1-PRKN-dependent pathway. Further analyses revealed a concomitant increase in mtDNA leakage into the cytosol and activation of the CGAS-STING1 inflammation axis. Notably, both phenomena are also observed in primary fibroblasts from aged human donors. We hypothesized that mitophagy might be selectively upregulated during aging to improve mitochondrial fitness and reduce mtDNA-induced inflammation. Treatment with the mitophagy inducer urolithin A alleviates age-associated neurological decline, including improved synaptic connectivity, cognitive memory and visual function. Supporting our initial hypothesis, urolithin A reduces the levels of cytosolic mtDNA, CGAS-STING1 activation and neuroinflammation. Finally, using an in vitro model of mitochondrial membrane permeabilization we validated that PINK1-PRKN-mediated mitophagy is essential to resolve cytosolic mtDNA-triggered inflammation. These findings open up an integrative approach to tackle aging and increase healthspan via mitophagy induction.


Assuntos
Envelhecimento , Mitofagia , Doenças Neuroinflamatórias , Mitofagia/fisiologia , Envelhecimento/patologia , Envelhecimento/metabolismo , Humanos , Animais , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Proteínas de Membrana/metabolismo , Proteínas Quinases/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Camundongos , Inflamação/patologia , Inflamação/metabolismo
20.
Mol Neurodegener ; 19(1): 49, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890703

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of blindness in elderly people in the developed world, and the number of people affected is expected to almost double by 2040. The retina presents one of the highest metabolic demands in our bodies that is partially or fully fulfilled by mitochondria in the neuroretina and retinal pigment epithelium (RPE), respectively. Together with its post-mitotic status and constant photooxidative damage from incoming light, the retina requires a tightly-regulated housekeeping system that involves autophagy. The natural polyphenol Urolithin A (UA) has shown neuroprotective benefits in several models of aging and age-associated disorders, mostly attributed to its ability to induce mitophagy and mitochondrial biogenesis. Sodium iodate (SI) administration recapitulates the late stages of AMD, including geographic atrophy and photoreceptor cell death. METHODS: A combination of in vitro, ex vivo and in vivo models were used to test the neuroprotective potential of UA in the SI model. Functional assays (OCT, ERGs), cellular analysis (flow cytometry, qPCR) and fine confocal microscopy (immunohistochemistry, tandem selective autophagy reporters) helped address this question. RESULTS: UA alleviated neurodegeneration and preserved visual function in SI-treated mice. Simultaneously, we observed severe proteostasis defects upon SI damage induction, including autophagosome accumulation, that were resolved in animals that received UA. Treatment with UA restored autophagic flux and triggered PINK1/Parkin-dependent mitophagy, as previously reported in the literature. Autophagy blockage caused by SI was caused by severe lysosomal membrane permeabilization. While UA did not induce lysosomal biogenesis, it did restore upcycling of permeabilized lysosomes through lysophagy. Knockdown of the lysophagy adaptor SQSTM1/p62 abrogated viability rescue by UA in SI-treated cells, exacerbated lysosomal defects and inhibited lysophagy. CONCLUSIONS: Collectively, these data highlight a novel putative application of UA in the treatment of AMD whereby it bypasses lysosomal defects by promoting p62-dependent lysophagy to sustain proteostasis.


Assuntos
Cumarínicos , Animais , Camundongos , Cumarínicos/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Retina/metabolismo , Retina/efeitos dos fármacos , Retina/patologia , Mitofagia/efeitos dos fármacos , Mitofagia/fisiologia , Proteína Sequestossoma-1/metabolismo , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Humanos , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Iodatos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA