Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 148(4): 327-335, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37264936

RESUMO

BACKGROUND: Out-of-hospital cardiac arrest due to shock-refractory ventricular fibrillation (VF) is associated with relatively poor survival. The ability to predict refractory VF (requiring ≥3 shocks) in advance of repeated shock failure could enable preemptive targeted interventions aimed at improving outcome, such as earlier administration of antiarrhythmics, reconsideration of epinephrine use or dosage, changes in shock delivery strategy, or expedited invasive treatments. METHODS: We conducted a cohort study of VF out-of-hospital cardiac arrest to develop an ECG-based algorithm to predict patients with refractory VF. Patients with available defibrillator recordings were randomized 80%/20% into training/test groups. A random forest classifier applied to 3-s ECG segments immediately before and 1 minute after the initial shock during cardiopulmonary resuscitation was used to predict the need for ≥3 shocks based on singular value decompositions of ECG wavelet transforms. Performance was quantified by area under the receiver operating characteristic curve. RESULTS: Of 1376 patients with VF out-of-hospital cardiac arrest, 311 (23%) were female, 864 (63%) experienced refractory VF, and 591 (43%) achieved functional neurological survival. Total shock count was associated with decreasing likelihood of functional neurological survival, with a relative risk of 0.95 (95% CI, 0.93-0.97) for each successive shock (P<0.001). In the 275 test patients, the area under the receiver operating characteristic curve for predicting refractory VF was 0.85 (95% CI, 0.79-0.89), with specificity of 91%, sensitivity of 63%, and a positive likelihood ratio of 6.7. CONCLUSIONS: A machine learning algorithm using ECGs surrounding the initial shock predicts patients likely to experience refractory VF, and could enable rescuers to preemptively target interventions to potentially improve resuscitation outcome.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca Extra-Hospitalar , Humanos , Feminino , Masculino , Parada Cardíaca Extra-Hospitalar/diagnóstico , Parada Cardíaca Extra-Hospitalar/terapia , Parada Cardíaca Extra-Hospitalar/complicações , Cardioversão Elétrica/efeitos adversos , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/terapia , Fibrilação Ventricular/complicações , Estudos de Coortes , Reanimação Cardiopulmonar/efeitos adversos
2.
J Cardiovasc Electrophysiol ; 35(4): 737-746, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355929

RESUMO

INTRODUCTION: Luminal esophageal temperature (LET) monitoring during atrial fibrillation (AF) ablation is widely used to reduce the incidence of endoscopically detected esophageal lesion (EDEL). We sought to assess whether specific patterns of LET variation are associated with EDEL. METHODS: A high-fidelity multisensor probe was used to record LET in AF patients undergoing radiofrequency ablation (RFA) or cryoballoon ablation (CBA). Explainable machine learning and SHapley Additive exPlanations (SHAP) analysis were used to predict EDEL and assess feature importance. RESULTS: A total of 94 patients (38.3% persistent AF, 71.3% male, 72 RFA, and 22 CBA) were included. EDEL was detected in 11 patients (10 RFA and one CBA). In the RFA group, the highest LET recorded was similar between patients with and without EDEL (40.6 [40.1-41]°C vs. 40.2 [39.1-40.9]°C; p = .313), however, the rate of LET rise for the highest recorded peak was higher (0.08 [0.03-0.12]°C/s vs. 0.02 [0.01-0.05]°C/s; p = .033), and the area under the curve (AUC) for the highest peak was smaller (412.5 [206.8-634.1] vs. 588.6 [380.4-861.1]; p = .047) in patients who had EDEL. In case of CBA, the patient with EDEL had a faster LET decline (0.12 vs. 0.07 [0.02-0.14]°C/s), and a smaller AUC for the lowest trough (2491.3 vs. 2629.3 [1712.6-5283.2]). SHAP analysis revealed that a rate of LET change higher than 0.05°C/s and an AUC less than 600 were more predictive of EDEL in RFA. CONCLUSION: The rate of LET change and AUC for the recorded temperature predicted EDEL, whereas absolute peak temperatures did not.


Assuntos
Fibrilação Atrial , Queimaduras , Ablação por Cateter , Veias Pulmonares , Humanos , Masculino , Feminino , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Fibrilação Atrial/epidemiologia , Esofagoscopia , Temperatura , Esôfago/lesões , Ablação por Cateter/efeitos adversos , Queimaduras/epidemiologia , Veias Pulmonares/cirurgia
3.
J Physiol ; 601(13): 2733-2749, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37014103

RESUMO

After myocardial infarction (MI), a significant portion of heart muscle is replaced with scar tissue, progressively leading to heart failure. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) offer a promising option for improving cardiac function after MI. However, hPSC-CM transplantation can lead to engraftment arrhythmia (EA). EA is a transient phenomenon arising shortly after transplantation then spontaneously resolving after a few weeks. The underlying mechanism of EA is unknown. We hypothesize that EA may be explained partially by time-varying, spatially heterogeneous, graft-host electrical coupling. Here, we created computational slice models derived from histological images that reflect different configuration of grafts in the infarcted ventricle. We ran simulations with varying degrees of connection imposed upon the graft-host perimeter to assess how heterogeneous electrical coupling affected EA with non-conductive scar, slow-conducting scar and scar replaced by host myocardium. We also quantified the effect of variation in intrinsic graft conductivity. Susceptibility to EA initially increased and subsequently decreased with increasing graft-host coupling, suggesting the waxing and waning of EA is regulated by progressive increases in graft-host coupling. Different spatial distributions of graft, host and scar yielded markedly different susceptibility curves. Computationally replacing non-conductive scar with host myocardium or slow-conducting scar, and increasing intrinsic graft conductivity both demonstrated potential means to blunt EA vulnerability. These data show how graft location, especially relative to scar, along with its dynamic electrical coupling to host, can influence EA burden; moreover, they offer a rational base for further studies aimed to define the optimal delivery of hPSC-CM injection. KEY POINTS: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) hold great cardiac regenerative potential but can also cause engraftment arrhythmias (EA). Spatiotemporal evolution in the pattern of electrical coupling between injected hPSC-CMs and surrounding host myocardium may explain the dynamics of EA observed in large animal models. We conducted simulations in histology-derived 2D slice computational models to assess the effects of heterogeneous graft-host electrical coupling on EA propensity, with or without scar tissue. Our findings suggest spatiotemporally heterogeneous graft-host coupling can create an electrophysiological milieu that favours graft-initiated host excitation, a surrogate metric of EA susceptibility. Removing scar from our models reduced but did not abolish the propensity for this phenomenon. Conversely, reduced intra-graft electrical connectedness increased the incidence of graft-initiated host excitation. The computational framework created for this study can be used to generate new hypotheses, targeted delivery of hPSC-CMs.


Assuntos
Cicatriz , Infarto do Miocárdio , Animais , Humanos , Cicatriz/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Infarto do Miocárdio/patologia , Arritmias Cardíacas , Diferenciação Celular
4.
J Cardiovasc Electrophysiol ; 34(2): 302-312, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36571158

RESUMO

INTRODUCTION: Late-gadolinium enhancement magnetic resonance (LGE-MRI) imaging is increasingly used in management of atrial fibrillation (AFib) patients. Here, we assess the usefulness of LGE-MRI-based fibrosis quantification to predict arrhythmia recurrence in patients undergoing cryoballoon ablation. Our secondary goal was to compare two widely used fibrosis quantification methods. METHODS: In 102 AF patients undergoing LGE-MRI and cryoballoon ablation (mean age 62 years; 64% male; 59% paroxysmal AFib), atrial fibrosis was quantified using the pixel intensity histogram (PIH) and image intensity ratio (IIR) methods. PIH segmentations were completed by a third-party provider as part of the standard of care at our hospital; Image intensity ratio (IIR) segmentations of the same scans were carried out in our lab using a commercially available software package. Fibrosis burdens and spatial distributions for the two methods were compared. Patients were followed prospectively for recurrent arrhythmia following ablation. RESULTS: Average PIH fibrosis was 15.6 ± 5.8% of the left atrial (LA) volume. Depending on threshold (IIRthr ), the average IIR fibrosis (% of LA wall surface area) ranged from 5.0 ± 7.2% (IIRthr = 1.2) to 37.4 ± 10.9% (IIRthr = 0.97). An IIRthr of 1.03 demonstrated the greatest agreement between the methods, but spatial overlap of fibrotic areas delineated by the two methods was modest (Sorenson Dice coefficient: 0.49). Fourty-two patients (41.2%) had recurrent arrhythmia. PIH fibrosis successfully predicted recurrence (HR 1.07; p = .02) over a follow-up period of 362 ± 149 days; regardless of IIRthr , IIR fibrosis did not predict recurrence. CONCLUSIONS: PIH-based volumetric assessment of atrial fibrosis was modestly predictive of arrhythmia recurrence following cryoballoon ablation in this cohort. IIR-based fibrosis was not predictive of recurrence for any of the IIRthr values tested, and the overlap in designated areas of fibrosis between the PIH and IIR methods was modest. Caution must therefore be exercised when interpreting LA fibrosis from LGE-MRI, since the values and spatial pattern are methodology-dependent.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Fibrilação Atrial/patologia , Meios de Contraste , Gadolínio , Imageamento por Ressonância Magnética/métodos , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Átrios do Coração/patologia , Fibrose , Ablação por Cateter/métodos
5.
Europace ; 24(2): 313-330, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34878119

RESUMO

We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (i) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (i) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording modes, (ii) impact of recording technologies on EGM morphology, (iii) global or local mapping using various types of EGM involving signal processing techniques including isochronal-, voltage- fractionation-, dipole density-, and rotor mapping, enabling derivation of parameters like atrial rate, entropy, conduction velocity/direction, (iv) value of epicardial and optical mapping, (v) AF detection by cardiac implantable electronic devices containing various detection algorithms applicable to stored EGMs, (vi) contribution of machine learning (ML) to further improvement of signals processing technologies. Recording and processing of EGM (or ECG) are the cornerstones of (body surface) mapping of AF. Currently available AF recording and processing technologies are mainly restricted to specific applications or have technological limitations. Improvements in AF mapping by obtaining highest fidelity source signals (e.g. catheter-electrode combinations) for signal processing (e.g. filtering, digitization, and noise elimination) is of utmost importance. Novel acquisition instruments (multi-polar catheters combined with improved physical modelling and ML techniques) will enable enhanced and automated interpretation of EGM recordings in the near future.


Assuntos
Fibrilação Atrial , Cardiologia , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/terapia , Mapeamento Potencial de Superfície Corporal , Átrios do Coração , Humanos , América Latina
6.
Europace ; 23(23 Suppl 1): i3-i11, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33751074

RESUMO

AIMS: Computationally guided persistent atrial fibrillation (PsAF) ablation has emerged as an alternative to conventional treatment planning. To make this approach scalable, computational cost and the time required to conduct simulations must be minimized while maintaining predictive accuracy. Here, we assess the sensitivity of the process to finite-element mesh resolution. We also compare methods for pacing site distribution used to evaluate inducibility arrhythmia sustained by re-entrant drivers (RDs). METHODS AND RESULTS: Simulations were conducted in low- and high-resolution models (average edge lengths: 400/350 µm) reconstructed from PsAF patients' late gadolinium enhancement magnetic resonance imaging scans. Pacing was simulated from 80 sites to assess RD inducibility. When pacing from the same site led to different outcomes in low-/high-resolution models, we characterized divergence dynamics by analysing dissimilarity index over time. Pacing site selection schemes prioritizing even spatial distribution and proximity to fibrotic tissue were evaluated. There were no RD sites observed in low-resolution models but not high-resolution models, or vice versa. Dissimilarity index analysis suggested that differences in simulation outcome arising from differences in discretization were the result of isolated conduction block incidents in one model but not the other; this never led to RD sites unique to one mesh resolution. Pacing site selection based on fibrosis proximity led to the best observed trade-off between number of stimulation locations and predictive accuracy. CONCLUSION: Simulations conducted in meshes with 400 µm average edge length and ∼40 pacing sites proximal to fibrosis are sufficient to reveal the most comprehensive possible list of RD sites, given feasibility constraints.


Assuntos
Fibrilação Atrial , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/terapia , Estimulação Cardíaca Artificial , Meios de Contraste , Gadolínio , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Humanos , Telas Cirúrgicas
7.
Pacing Clin Electrophysiol ; 43(11): 1273-1280, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32914522

RESUMO

BACKGROUND: Atypical atrial flutter (AFL) is common in patients with postsurgical atrial scar, with macro- or microscopic channels in the scar acting as substrate for reentry. Heterogeneous atrial scarring can cause varying flutter circuits, which makes mapping and ablation challenging, and recurrences common. AIM: We hypothesize that dynamically adjusting voltage thresholds can identify heterogeneous atrial scarring, which can then be effectively homogenized to eliminate atypical AFLs. METHODS: We studied consecutive patients who presented to Electrophysiology laboratory for atypical AFL ablation with history of atriotomy and included the patients with multiple, varying flutter circuits during mapping in our study. We excluded patients with stable flutter circuit that was sustained and could be localized using traditional entrainment and activation mapping strategy. In the included patients, we performed detailed high-density voltage map of the atrium of interest. We adjusted voltage thresholds as needed to identify heterogeneity and channels in the scarred regions. A thorough scar homogenization was performed with irrigated smart-touch ablation catheter. Re-inducibility of tachycardia, and immediate and long-term outcomes were studied. RESULTS: Of five studied cases, one was female; age 66 ± 10 years. All five had prior surgical substrate. All the patients had multiple flutter morphologies, which varied as we mapped the AFL. After scar homogenization, tachycardia was not inducible in any patient. No recurrence of flutter was noted during a mean follow-up duration of 450 ± 27 days. CONCLUSION: High-density voltage mapping and homogenization of the scar can be an effective strategy in eliminating complex scar-mediated atypical AFL with multiple circuits.


Assuntos
Flutter Atrial/fisiopatologia , Flutter Atrial/cirurgia , Ablação por Cateter/métodos , Cicatriz/fisiopatologia , Cicatriz/cirurgia , Idoso , Mapeamento Epicárdico , Feminino , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade
8.
Genes Dev ; 26(13): 1486-97, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22751502

RESUMO

A variety of biological phenomena, from disease progression to stem cell differentiation, are typified by a prolonged cellular response to a transient environmental cue. While biologically relevant, heterogeneity in these long-term responses is difficult to assess at the population level, necessitating the development of biological tools to track cell fate within subpopulations. Here we present a novel synthetic biology approach for identifying and tracking mammalian cell subpopulations. We constructed three genomically integrated circuits that use bistable autoregulatory transcriptional feedback to retain memory of exposure to brief stimuli. These "memory devices" are used to isolate and track the progeny of cells that responded differentially to doxycycline, hypoxia, or DNA-damaging agents. Following hypoxic or ultraviolet radiation exposure, strongly responding cells activate the memory device and exhibit changes in gene expression, growth rates, and viability for multiple generations after the initial stimulus. Taken together, these results indicate that a heritable memory of hypoxia and DNA damage exists in subpopulations that differ in long-term cell behavior.


Assuntos
Linhagem da Célula , Hipóxia Celular , Linhagem Celular Tumoral , Dano ao DNA , Humanos
9.
J Mol Cell Cardiol ; 128: 117-128, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30677394

RESUMO

Cardiac conduction disturbances are linked with arrhythmia development. The concept of safety factor (SF) has been derived to describe the robustness of conduction, but the usefulness of this metric has been constrained by several limitations. For example, due to the difficulty of measuring the necessary input variables, SF calculations have only been applied to synthetic data. Moreover, quantitative validation of SF is lacking; specifically, the practical meaning of particular SF values is unclear, aside from the fact that propagation failure (i.e., conduction block) is characterized by SF < 1. This study aims to resolve these limitations for our previously published SF formulation and explore its relationship to relevant electrophysiological properties of cardiac tissue. First, HL-1 cardiomyocyte monolayers were grown on multi-electrode arrays and the robustness of propagation was estimated using extracellular potential recordings. SF values reconstructed purely from experimental data were largely between 1 and 5 (up to 89.1% of sites characterized). This range is consistent with values derived from synthetic data, proving that the formulation is sound and its applicability is not limited to analysis of computational models. Second, for simulations conducted in 1-, 2-, and 3-dimensional tissue blocks, we calculated true SF values at locations surrounding the site of current injection for sub- and supra-threshold stimuli and found that they differed from values estimated by our SF formulation by <10%. Finally, we examined SF dynamics under conditions relevant to arrhythmia development in order to provide physiological insight. Our analysis shows that reduced conduction velocity (Θ) caused by impaired intrinsic cell-scale excitability (e.g., due to sodium current a loss-of-function mutation) is associated with less robust conduction (i.e., lower SF); however, intriguingly, Θ variability resulting from modulation of tissue scale conductivity has no effect on SF. These findings are supported by analytic derivation of the relevant relationships from first principles. We conclude that our SF formulation, which can be applied to both experimental and synthetic data, produces values that vary linearly with the excess charge needed for propagation. SF calculations can provide insights helpful in understanding the initiation and perpetuation of cardiac arrhythmia.


Assuntos
Arritmias Cardíacas/fisiopatologia , Fenômenos Eletrofisiológicos , Modelos Cardiovasculares , Contração Miocárdica/fisiologia , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/epidemiologia , Bloqueio Cardíaco/fisiopatologia , Frequência Cardíaca/fisiologia , Humanos , Contração Miocárdica/genética , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Condutividade Térmica
10.
Proc Natl Acad Sci U S A ; 113(41): 11555-11560, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27681629

RESUMO

Somatic mosaicism, the occurrence and propagation of genetic variation in cell lineages after fertilization, is increasingly recognized to play a causal role in a variety of human diseases. We investigated the case of life-threatening arrhythmia in a 10-day-old infant with long QT syndrome (LQTS). Rapid genome sequencing suggested a variant in the sodium channel NaV1.5 encoded by SCN5A, NM_000335:c.5284G > T predicting p.(V1762L), but read depth was insufficient to be diagnostic. Exome sequencing of the trio confirmed read ratios inconsistent with Mendelian inheritance only in the proband. Genotyping of single circulating leukocytes demonstrated the mutation in the genomes of 8% of patient cells, and RNA sequencing of cardiac tissue from the infant confirmed the expression of the mutant allele at mosaic ratios. Heterologous expression of the mutant channel revealed significantly delayed sodium current with a dominant negative effect. To investigate the mechanism by which mosaicism might cause arrhythmia, we built a finite element simulation model incorporating Purkinje fiber activation. This model confirmed the pathogenic consequences of cardiac cellular mosaicism and, under the presenting conditions of this case, recapitulated 2:1 AV block and arrhythmia. To investigate the extent to which mosaicism might explain undiagnosed arrhythmia, we studied 7,500 affected probands undergoing commercial gene-panel testing. Four individuals with pathogenic variants arising from early somatic mutation events were found. Here we establish cardiac mosaicism as a causal mechanism for LQTS and present methods by which the general phenomenon, likely to be relevant for all genetic diseases, can be detected through single-cell analysis and next-generation sequencing.


Assuntos
Predisposição Genética para Doença , Síndrome do QT Longo/genética , Mosaicismo , Potenciais de Ação , Arritmias Cardíacas/complicações , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Sequência de Bases , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Simulação por Computador , Difusão , Eletrocardiografia , Frequência do Gene/genética , Genes Dominantes , Loci Gênicos , Técnicas de Genotipagem , Sistema de Condução Cardíaco/fisiopatologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Ativação do Canal Iônico/genética , Síndrome do QT Longo/complicações , Síndrome do QT Longo/diagnóstico por imagem , Síndrome do QT Longo/fisiopatologia , Modelos Biológicos , Mutação/genética , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fenótipo , Análise de Célula Única
11.
Pediatr Cardiol ; 40(4): 857-864, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30840104

RESUMO

Children with myocarditis have increased risk of ventricular tachycardia (VT) due to myocardial inflammation and remodeling. There is currently no accepted method for VT risk stratification in this population. We hypothesized that personalized models developed from cardiac late gadolinium enhancement magnetic resonance imaging (LGE-MRI) could determine VT risk in patients with myocarditis using a previously-validated protocol. Personalized three-dimensional computational cardiac models were reconstructed from LGE-MRI scans of 12 patients diagnosed with myocarditis. Four patients with clinical VT and eight patients without VT were included in this retrospective analysis. In each model, we incorporated a personalized spatial distribution of fibrosis and myocardial fiber orientations. Then, VT inducibility was assessed in each model by pacing rapidly from 26 sites distributed throughout both ventricles. Sustained reentrant VT was induced from multiple pacing sites in all patients with clinical VT. In the eight patients without clinical VT, we were unable to induce sustained reentry in our simulations using rapid ventricular pacing. Application of our non-invasive approach in children with myocarditis has the potential to correctly identify those at risk for developing VT.


Assuntos
Ventrículos do Coração/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imagem Cinética por Ressonância Magnética/métodos , Miocardite/complicações , Taquicardia Ventricular/diagnóstico por imagem , Adolescente , Criança , Simulação por Computador , Feminino , Gadolínio , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Projetos Piloto , Estudos Retrospectivos , Medição de Risco/métodos , Taquicardia Ventricular/etiologia
12.
J Physiol ; 596(2): 181-196, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29193078

RESUMO

KEY POINTS: Optogenetics has emerged as a potential alternative to electrotherapy for treating heart rhythm disorders, but its applicability for terminating atrial arrhythmias remains largely unexplored. We used computational models reconstructed from clinical MRI scans of fibrotic patient atria to explore the feasibility of optogenetic termination of atrial tachycardia (AT), comparing two different illumination strategies: distributed vs. targeted. We show that targeted optogenetic stimulation based on automated, non-invasive flow-network analysis of patient-specific re-entry morphology may be a reliable approach for identifying the optimal illumination target in each individual (i.e. the critical AT isthmus). The above-described approach yields very high success rates (up to 100%) and requires dramatically less input power than distributed illumination We conclude that simulations in patient-specific models show that targeted light pulses lasting longer than the AT cycle length can efficiently and reliably terminate AT if the human atria can be successfully light-sensitized via gene delivery of ChR2. ABSTRACT: Optogenetics has emerged as a potential alternative to electrotherapy for treating arrhythmia, but feasibility studies have been limited to ventricular defibrillation via epicardial light application. Here, we assess the efficacy of optogenetic atrial tachycardia (AT) termination in human hearts using a strategy that targets for illumination specific regions identified in an automated manner. In three patient-specific models reconstructed from late gadolinium-enhanced MRI scans, we simulated channelrhodopsin-2 (ChR2) expression via gene delivery. In all three models, we attempted to terminate re-entrant AT (induced via rapid pacing) via optogenetic stimulation. We compared two strategies: (1) distributed illumination of the endocardium by multi-optrode grids (number of optrodes, Nopt  = 64, 128, 256) and (2) targeted illumination of the critical isthmus, which was identified via analysis of simulated activation patterns using an algorithm based on flow networks. The illuminated area and input power were smaller for the targeted approach (19-57.8 mm2 ; 0.6-1.8 W) compared to the sparsest distributed arrays (Nopt  = 64; 124.9 ± 6.3 mm2 ; 3.9 ± 0.2 W). AT termination rates for distributed illumination were low, ranging from <5% for short pulses (1/10 ms long) to ∼20% for longer stimuli (100/1000 ms). When we attempted to terminate the same AT episodes with targeted illumination, outcomes were similar for short pulses (1/10 ms long: 0% success) but improved for longer stimuli (100 ms: 54% success; 1000 ms: 90% success). We conclude that simulations in patient-specific models show that light pulses lasting longer than the AT cycle length can efficiently and reliably terminate AT in atria light-sensitized via gene delivery. We show that targeted optogenetic stimulation based on analysis of AT morphology may be a reliable approach for defibrillation and requires less power than distributed illumination.


Assuntos
Potenciais de Ação , Simulação por Computador , Átrios do Coração/citologia , Optogenética/métodos , Taquicardia/terapia , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Átrios do Coração/fisiopatologia , Átrios do Coração/efeitos da radiação , Humanos
13.
Europace ; 20(suppl_3): iii45-iii54, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476053

RESUMO

AIMS: Efforts to improve ablation success rates in persistent atrial fibrillation (AF) patients by targeting re-entrant driver (RD) sites have been hindered by weak mechanistic understanding regarding emergent RDs localization following initial fibrotic substrate modification. This study aimed to systematically assess arrhythmia dynamics after virtual ablation of RD sites in computational models. METHODS AND RESULTS: Simulations were conducted in 12 patient-specific atrial models reconstructed from pre-procedure late gadolinium-enhanced magnetic resonance imaging scans. In a previous study involving these same models, we comprehensively characterized pre-ablation RDs in simulations conducted with either 'average human AF'-based electrophysiology (i.e. EPavg) or ±10% action potential duration or conduction velocity (i.e. EPvar). Re-entrant drivers seen under the EPavg condition were virtually ablated and the AF initiation protocol was re-applied. Twenty-one emergent RDs were observed in 9/12 atrial models (1.75 ± 1.35 emergent RDs per model); these dynamically localized to boundary regions between fibrotic and non-fibrotic tissue. Most emergent RD locations (15/21, 71.4%) were within 0.1 cm of sites where RDs were seen pre-ablation in simulations under EPvar conditions. Importantly, this suggests that the level of uncertainty in our models' ability to predict patient-specific ablation targets can be substantially mitigated by running additional simulations that include virtual ablation of RDs. In 7/12 atrial models, at least one episode of macro-reentry around ablation lesion(s) was observed. CONCLUSION: Arrhythmia episodes after virtual RD ablation are perpetuated by both emergent RDs and by macro-reentrant circuits formed around lesions. Custom-tailoring of ablation procedures based on models should take steps to mitigate these sources of AF recurrence.


Assuntos
Potenciais de Ação , Fibrilação Atrial/cirurgia , Função Atrial , Ablação por Cateter , Simulação por Computador , Átrios do Coração/cirurgia , Frequência Cardíaca , Modelos Cardiovasculares , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial , Ablação por Cateter/efeitos adversos , Fibrose , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/fisiopatologia , Humanos , Cinética , Imageamento por Ressonância Magnética , Recidiva , Resultado do Tratamento
14.
Chaos ; 27(9): 093932, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28964164

RESUMO

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, causing morbidity and mortality in millions worldwide. The atria of patients with persistent AF (PsAF) are characterized by the presence of extensive and distributed atrial fibrosis, which facilitates the formation of persistent reentrant drivers (RDs, i.e., spiral waves), which promote fibrillatory activity. Targeted catheter ablation of RD-harboring tissues has shown promise as a clinical treatment for PsAF, but the outcomes remain sub-par. Personalized computational modeling has been proposed as a means of non-invasively predicting optimal ablation targets in individual PsAF patients, but it remains unclear how RD localization dynamics are influenced by inter-patient variability in the spatial distribution of atrial fibrosis, action potential duration (APD), and conduction velocity (CV). Here, we conduct simulations in computational models of fibrotic atria derived from the clinical imaging of PsAF patients to characterize the sensitivity of RD locations to these three factors. We show that RDs consistently anchor to boundaries between fibrotic and non-fibrotic tissues, as delineated by late gadolinium-enhanced magnetic resonance imaging, but those changes in APD/CV can enhance or attenuate the likelihood that an RD will anchor to a specific site. These findings show that the level of uncertainty present in patient-specific atrial models reconstructed without any invasive measurements (i.e., incorporating each individual's unique distribution of fibrotic tissue from medical imaging alongside an average representation of AF-remodeled electrophysiology) is sufficiently high that a personalized ablation strategy based on targeting simulation-predicted RD trajectories alone may not produce the desired result.


Assuntos
Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Simulação por Computador , Fenômenos Eletrofisiológicos , Processamento de Imagem Assistida por Computador , Modelos Cardiovasculares , Potenciais de Ação , Fibrose , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Fatores de Tempo
15.
J Physiol ; 594(23): 6879-6891, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-26941055

RESUMO

KEY POINTS: Optogenetics-based defibrillation, a theoretical alternative to electrotherapy, involves expression of light-sensitive ion channels in the heart (via gene or cell therapy) and illumination of the cardiac surfaces (via implanted LED arrays) to elicit light-induced activations. We used a biophysically detailed human ventricular model to determine whether such a therapy could terminate fibrillation (VF) and identify which combinations of light-sensitive ion channel properties and illumination configurations would be effective. Defibrillation was successful when a large proportion (> 16.6%) of ventricular tissue was directly stimulated by light that was bright enough to induce an action potential in an uncoupled cell. While illumination with blue light never successfully terminated VF, illumination of red light-sensitive ion channels with dense arrays of implanted red light sources resulted in successful defibrillation. Our results suggest that cardiac expression of red light-sensitive ion channels is necessary for the development of effective optogenetics-based defibrillation therapy using LED arrays. ABSTRACT: Optogenetics-based defibrillation has been proposed as a novel and potentially pain-free approach to enable cardiomyocyte-selective defibrillation in humans, but the feasibility of such a therapy remains unknown. This study aimed to (1) assess the feasibility of terminating sustained ventricular fibrillation (VF) via light-induced excitation of opsins expressed throughout the myocardium and (2) identify the ideal (theoretically possible) opsin properties and light source configurations that would maximise therapeutic efficacy. We conducted electrophysiological simulations in an MRI-based human ventricular model with VF induced by rapid pacing; light sensitisation via systemic, cardiac-specific gene transfer of channelrhodopsin-2 (ChR2) was simulated. In addition to the widely used blue light-sensitive ChR2-H134R, we also modelled theoretical ChR2 variants with augmented light sensitivity (ChR2+), red-shifted spectral sensitivity (ChR2-RED) or both (ChR2-RED+). Light sources were modelled as synchronously activating LED arrays (LED radius: 1 mm; optical power: 10 mW mm-2 ; array density: 1.15-4.61 cm-2 ). For each unique optogenetic configuration, defibrillation was attempted with two different optical pulse durations (25 and 500 ms). VF termination was only successful for configurations involving ChR2-RED and ChR2-RED+ (for LED arrays with density ≥ 2.30 cm-2 ), suggesting that opsin spectral sensitivity was the most important determinant of optogenetic defibrillation efficacy. This was due to the deeper penetration of red light in cardiac tissue compared with blue light, which resulted in more widespread light-induced propagating wavefronts. Longer pulse duration and higher LED array density were associated with increased optogenetic defibrillation efficacy. In all cases observed, the defibrillation mechanism was light-induced depolarisation of the excitable gap, which led to block of reentrant wavefronts.


Assuntos
Coração/efeitos da radiação , Fibrilação Ventricular/terapia , Channelrhodopsins , Simulação por Computador , Humanos , Luz , Optogenética , Modelagem Computacional Específica para o Paciente
16.
Europace ; 18(suppl 4): iv136-iv145, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28011841

RESUMO

: Atrial arrhythmias involving a fibrotic substrate are an important cause of morbidity and mortality. In many cases, effective treatment of such rhythm disorders is severely hindered by a lack of mechanistic understanding relating features of fibrotic remodelling to dynamics of re-entrant arrhythmia. With the advent of clinical imaging modalities capable of resolving the unique fibrosis spatial pattern present in the atria of each individual patient, a promising new research trajectory has emerged in which personalized computational models are used to analyse mechanistic underpinnings of arrhythmia dynamics based on the distribution of fibrotic tissue. In this review, we first present findings that have yielded a robust and detailed biophysical representation of fibrotic substrate electrophysiological properties. Then, we summarize the results of several recent investigations seeking to use organ-scale models of the fibrotic human atria to derive new insights on mechanisms of arrhythmia perpetuation and to develop novel strategies for model-assisted individualized planning of catheter ablation procedures for atrial arrhythmias.


Assuntos
Fibrilação Atrial/fisiopatologia , Flutter Atrial/fisiopatologia , Função Atrial , Átrios do Coração/fisiopatologia , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Potenciais de Ação , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Flutter Atrial/diagnóstico , Flutter Atrial/cirurgia , Remodelamento Atrial , Técnicas de Imagem Cardíaca , Ablação por Cateter , Técnicas Eletrofisiológicas Cardíacas , Fibrose , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/patologia , Átrios do Coração/cirurgia , Frequência Cardíaca , Humanos , Imageamento Tridimensional , Valor Preditivo dos Testes
17.
Europace ; 18(suppl 4): iv146-iv155, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28011842

RESUMO

AIMS: Catheter ablation is an effective technique for terminating atrial arrhythmia. However, given a high atrial fibrillation (AF) recurrence rate, optimal ablation strategies have yet to be defined. Computer modelling can be a powerful aid but modelling of fibrosis, a major factor associated with AF, is an open question. Several groups have proposed methodologies based on imaging data, but no comparison to determine which methodology best corroborates clinically observed reentrant behaviour has been performed. We examined several methodologies to determine the best method for capturing fibrillation dynamics. METHODS AND RESULTS: Patient late gadolinium-enhanced magnetic resonance imaging data were transferred onto a bilayer atrial computer model and used to assign fibrosis distributions. Fibrosis was modelled as conduction disturbances (lower conductivity, edge splitting, or percolation), transforming growth factor-ß1 ionic channel effects, myocyte-fibroblast coupling, and combinations of the preceding. Reentry was induced through pulmonary vein ectopy and the ensuing rotor dynamics characterized. Non-invasive electrocardiographic imaging data of the patients in AF was used for comparison. Electrograms were computed and the fractionation durations measured over the surface. Edge splitting produced more phase singularities from wavebreaks than the other representations. The number of phase singularities seen with percolation was closer to the clinical values. Addition of fibroblast coupling had an organizing effect on rotor dynamics. Simple tissue conductivity changes with ionic changes localized rotors over fibrosis which was not observed with clinical data. CONCLUSION: The specific representation of fibrosis has a large effect on rotor dynamics and needs to be carefully considered for patient specific modelling.


Assuntos
Fibrilação Atrial/diagnóstico , Função Atrial , Técnicas Eletrofisiológicas Cardíacas/métodos , Átrios do Coração/fisiopatologia , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Potenciais de Ação , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Eletrocardiografia , Fibrose , Átrios do Coração/patologia , Frequência Cardíaca , Humanos , Imageamento por Ressonância Magnética , Valor Preditivo dos Testes , Prognóstico , Processamento de Sinais Assistido por Computador
18.
Circulation ; 129(8): 875-85, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24403563

RESUMO

BACKGROUND: Resistant ventricular fibrillation, refibrillation. and diminished myocardial contractility are important factors leading to poor survival after cardiac arrest. We hypothesized that dantrolene improves survival after ventricular fibrillation (VF) by rectifying the calcium dysregulation caused by VF. METHODS AND RESULTS: VF was induced in 26 Yorkshire pigs for 4 minutes. Cardiopulmonary resuscitation was then commenced for 3 minutes, and dantrolene or isotonic saline was infused at the onset of cardiopulmonary resuscitation. Animals were defibrillated and observed for 30 minutes. To study the effect of VF on calcium handling and its modulation by dantrolene, hearts from 14 New Zealand rabbits were Langendorff-perfused. The inducibility of VF after dantrolene administration was documented. Optical mapping was performed to evaluate diastolic spontaneous calcium elevations as a measure of cytosolic calcium leak. The sustained return of spontaneous circulation (systolic blood pressure ≥60 mm Hg) was achieved in 85% of the dantrolene group in comparison with 39% of controls (P=0.02). return of spontaneous circulation was achieved earlier in dantrolene-treated pigs after successful defibrillation (21 ± 6 s versus 181 ± 57 s in controls, P=0.005). The median number of refibrillation episodes was lower in the dantrolene group (0 versus 1, P=0.04). In isolated rabbit hearts, the successful induction of VF was achieved in 83% of attempts in controls versus 41% in dantrolene-treated hearts (P=0.007). VF caused diastolic calcium leaks in the form of spontaneous calcium elevations. Administration of 20 µmol/L dantrolene significantly decreased spontaneous calcium elevation amplitude versus controls. (0.024 ± 0.013 versus 0.12 ± 0.02 arbitrary unit [200-ms cycle length], P=0.001). CONCLUSIONS: Dantrolene infusion during cardiopulmonary resuscitation facilitates successful defibrillation, improves hemodynamics postdefibrillation, decreases refibrillation, and thus improves survival after cardiac arrest. The effects are mediated through normalizing VF-induced dysfunctional calcium cycling.


Assuntos
Cálcio/metabolismo , Dantroleno/farmacologia , Contração Miocárdica/efeitos dos fármacos , Fibrilação Ventricular/tratamento farmacológico , Fibrilação Ventricular/metabolismo , Animais , Reanimação Cardiopulmonar , Morte Súbita Cardíaca/prevenção & controle , Modelos Animais de Doenças , Cardioversão Elétrica , Hemodinâmica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos , Modelos Cardiovasculares , Relaxantes Musculares Centrais/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Ramos Subendocárdicos/efeitos dos fármacos , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sus scrofa , Fibrilação Ventricular/mortalidade
19.
Nat Chem Biol ; 8(6): 527-35, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22596204

RESUMO

Metabolism is a highly interconnected web of chemical reactions that power life. Though the stoichiometry of metabolism is well understood, the multidimensional aspects of metabolic regulation in time and space remain difficult to define, model and engineer. Complex metabolic conversions can be performed by multiple species working cooperatively and exchanging metabolites via structured networks of organisms and resources. Within cells, metabolism is spatially regulated via sequestration in subcellular compartments and through the assembly of multienzyme complexes. Metabolic engineering and synthetic biology have had success in engineering metabolism in the first and second dimensions, designing linear metabolic pathways and channeling metabolic flux. More recently, engineering of the third dimension has improved output of engineered pathways through isolation and organization of multicell and multienzyme complexes. This review highlights natural and synthetic examples of three-dimensional metabolism both inter- and intracellularly, offering tools and perspectives for biological design.


Assuntos
Redes e Vias Metabólicas , Engenharia de Proteínas/métodos , Biologia Sintética/métodos , Animais , Celulossomas/enzimologia , Celulossomas/metabolismo , Cilióforos/enzimologia , Cilióforos/metabolismo , Evolução Molecular Direcionada , Transporte de Elétrons , Euryarchaeota/enzimologia , Euryarchaeota/metabolismo , Humanos , Modelos Biológicos , Complexos Multienzimáticos/metabolismo , Periplaneta/metabolismo , Esgotos/microbiologia , Simbiose , Leveduras/enzimologia , Leveduras/metabolismo
20.
Europace ; 16 Suppl 4: iv69-iv76, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25362173

RESUMO

AIMS: Diseases that abbreviate the cardiac action potential (AP) by increasing the strength of repolarizing transmembrane currents are highly arrhythmogenic. It has been proposed that optogenetic tools could be used to restore normal AP duration (APD) in the heart under such disease conditions. This study aims to evaluate the efficacy of an optogenetic treatment modality for prolonging pathologically shortened APs in a detailed computational model of short QT syndrome (SQTS) in the human atria, and compare it to drug treatment. METHODS AND RESULTS: We used a human atrial myocyte model with faster repolarization caused by SQTS; light sensitivity was inscribed via the presence of channelrhodopsin-2 (ChR2). We conducted simulations in single cells and in a magnetic resonance imaging-based model of the human left atrium (LA). Application of an appropriate optical stimulus to a diseased cell dynamically increased APD, producing an excellent match to control AP (<1.5 mV deviation); treatment of a diseased cell with an AP-prolonging drug (chloroquine) also increased APD, but the match to control AP was worse (>5 mV deviation). Under idealized conditions in the LA (uniform ChR2-expressing cell distribution, no light attenuation), optogenetics-based therapy outperformed chloroquine treatment (APD increased to 87% and 81% of control). However, when non-uniform ChR2-expressing cell distribution and light attenuation were incorporated, optogenetics-based treatment was less effective (APD only increased to 55%). CONCLUSION: This study demonstrates proof of concept for optogenetics-based treatment of diseases that alter atrial AP shape. We identified key practical obstacles intrinsic to the optogenetic approach that must be overcome before such treatments can be realized.


Assuntos
Antiarrítmicos/uso terapêutico , Cloroquina/uso terapêutico , Átrios do Coração/efeitos dos fármacos , Optogenética , Potenciais de Ação , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/terapia , Simulação por Computador , Técnicas Eletrofisiológicas Cardíacas , Estudos de Viabilidade , Átrios do Coração/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Modelos Cardiovasculares , Rodopsina/genética , Rodopsina/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA