Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(15): 156901, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37115858

RESUMO

The determination of depth profiles across interfaces is of primary importance in many scientific and technological areas. Photoemission spectroscopy is in principle well suited for this purpose, yet a quantitative implementation for investigations of liquid-vapor interfaces is hindered by the lack of understanding of electron-scattering processes in liquids. Previous studies have shown, however, that core-level photoelectron angular distributions (PADs) are altered by depth-dependent elastic electron scattering and can, thus, reveal information on the depth distribution of species across the interface. Here, we explore this concept further and show that the experimental anisotropy parameter characterizing the PAD scales linearly with the average distance of atoms along the surface normal obtained by molecular dynamics simulations. This behavior can be accounted for in the low-collision-number regime. We also show that results for different atomic species can be compared on the same length scale. We demonstrate that atoms separated by about 1 Å along the surface normal can be clearly distinguished with this method, achieving excellent depth resolution.

2.
Phys Chem Chem Phys ; 25(22): 15555-15566, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37252735

RESUMO

We studied N 1s-1 inner-shell processes of the free base Phthalocyanine molecule, H2Pc, in the gas-phase. This complex organic molecule contains three different nitrogen sites defined by their covalent bonds. We identify the contribution of each site in ionized, core-shell excited or relaxed electronic states by the use of different theoretical methods. In particular, we present resonant Auger spectra along with a tentative new theoretical approach based on multiconfiguration self-consistent field calculations to simulate them. These calculations may pave the road towards resonant Auger spectroscopy in complex molecules.

3.
Phys Chem Chem Phys ; 25(16): 11085-11092, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36484473

RESUMO

Understanding the mechanisms of X-ray radiation damage in biological systems is of prime interest in medicine (radioprotection, X-ray therapy…). Study of low-energy rays, such as soft-X rays and light ions, points to attribute their lethal effect to clusters of energy deposition by low-energy electrons. The first step, at the atomic or molecular level, is often the ionization of inner-shell electrons followed by Auger decay in an aqueous environment. We have developed an experimental set-up to perform electron coincidence spectroscopy on molecules in a water micro-jet. We present here the first results obtained on sodium benzoate solutions, irradiated at the oxygen and carbon K-edges.

4.
J Chem Phys ; 155(19): 194301, 2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34800957

RESUMO

We present a comparison of the photoionization dynamics of the 4d shell of XeF2 from threshold to 250 eV to those of the prototypical 4d shell of atomic Xe. The new experimental data include spin-orbit and ligand-field-resolved partial cross sections, photoelectron angular distributions, branching fractions, and lifetime widths for the 4d-hole states. The spin-orbit branching fractions and angular distributions are remarkably similar to the corresponding distributions from atomic Xe across a broad energy interval that includes both the intense shape resonance in the f continuum and a Cooper minimum in the same channel. The angular distributions and branching fractions are also in reasonably good agreement with our first-principles theoretical calculations on XeF2. Data are also presented on the lifetime widths of the substate-resolved 4d-hole states of XeF2. While the trends in the widths are similar to those in the earlier experimental and theoretical work, the linewidths are considerably smaller than in the previous measurements, which may require some reinterpretation of the decay mechanism. Finally, we present new data and an analysis of the Auger electron spectra for ionization above the 4d thresholds and resonant Auger spectra for several pre-edge features.

5.
Nature ; 486(7404): 513-7, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22739316

RESUMO

The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.


Assuntos
Aerossóis/análise , Aerossóis/química , Fractais , Espectrometria de Massas , Movimento (Física) , Fuligem/análise , Fuligem/química , Aminoácidos/química , Elétrons , Lasers , Nanopartículas , Tamanho da Partícula , Proteínas/química , Solventes/química , Vibração , Difração de Raios X
6.
J Chem Phys ; 149(3): 034308, 2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037265

RESUMO

In this paper, we investigate HNCO by resonant and nonresonant Auger electron spectroscopy at the K-edges of carbon, nitrogen, and oxygen, employing soft X-ray synchrotron radiation. In comparison with the isosteric but linear CO2 molecule, spectra of the bent HNCO molecule are similar but more complex due to its reduced symmetry, wherein the degeneracy of the π-orbitals is lifted. Resonant Auger electron spectra are presented at different photon energies over the first core-excited 1s → 10a' resonance. All Auger electron spectra are assigned based on ab initio configuration interaction computations combined with the one-center approximation for Auger intensities and moment theory to consider vibrational motion. The calculated spectra were scaled by a newly introduced energy scaling factor, and generally, good agreement is found between experiment and theory for normal as well as resonant Auger electron spectra. A comparison of resonant Auger spectra with nonresonant Auger structures shows a slight broadening as well as a shift of the former spectra between -8 and -9 eV due to the spectating electron. Since HNCO is a small molecule and contains the four most abundant atoms of organic molecules, the reported Auger electron decay spectra will provide a benchmark for further theoretical approaches in the computation of core electron spectra.

7.
Phys Rev Lett ; 116(19): 193002, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27232020

RESUMO

In the angle-averaged excitation and decay spectra of molecules, vibronic coupling may induce the usually weak dipole-forbidden transitions by the excitation intensity borrowing mechanism. The present complementary theoretical and experimental study of the resonant Auger decay of core-to-Rydberg excited CH_{4} and Ne demonstrates that vibronic coupling plays a decisive role in the formation of the angle-resolved spectra by additionally involving the decay rate borrowing mechanism. Thereby, we propose that the angle-resolved Auger spectroscopy can in general provide very insightful information on the strength of the vibronic coupling.

8.
Nature ; 466(7302): 56-61, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20596013

RESUMO

An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10(18) W cm(-2), 1.5-0.6 nm, approximately 10(5) X-ray photons per A(2)). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse-by sequentially ejecting electrons-to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces 'hollow' atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.

9.
J Phys Chem A ; 118(27): 4975-81, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25007894

RESUMO

Due to strong electron correlation effects and electron coupling with nuclear motion, the molecular inner-valence photoionization is still a challenge in electron spectroscopy, resulting in several interesting phenomena such as drastic changes of angular dependencies, spin-orbit induced predissociation, and complex interplay between adiabatic and nonadiabatic transitions. We investigated the excited electronic states of HCl(+) in the binding energy range 27.5-30.5 eV using synchrotron radiation based high-resolution inner-valence photoelectron spectroscopy with angular resolution and interpreted the observations with the help of ab initio calculations. Overlapping electronic states in this region were disentangled through the analysis of photoelectron emission anisotropies. For instance, a puzzling transition, which does not seem to obey either an adiabatic or a nonadiabatic picture, has been identified at ∼28.6 eV binding energy. By this study, we show that ultrahigh-resolution photoelectron spectroscopy with angular selectivity represents a powerful tool to probe the highly excited ionic molecular electronic states and their intricate couplings.

10.
Phys Rev Lett ; 110(5): 053003, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23414017

RESUMO

Ionization and fragmentation of methylselenol (CH(3)SeH) molecules by intense (>10(17) W/cm(2)) 5 fs x-ray pulses (hω=2 keV) are studied by coincident ion momentum spectroscopy. We contrast the measured charge state distribution with data on atomic Kr, determine kinetic energies of resulting ionic fragments, and compare them to the outcome of a Coulomb explosion model. We find signatures of ultrafast charge redistribution from the inner-shell ionized Se atom to its molecular partners, and observe significant displacement of the atomic constituents in the course of multiple ionization.

11.
Phys Rev Lett ; 111(7): 073002, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23992061

RESUMO

When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a correlation method called "partial covariance mapping" to probe the electron dynamics of neon atoms exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well suited to the high counting rate inherent in FEL experiments.

12.
Opt Express ; 20(12): 13501-12, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22714377

RESUMO

The emergence of femtosecond diffractive imaging with X-ray lasers has enabled pioneering structural studies of isolated particles, such as viruses, at nanometer length scales. However, the issue of missing low frequency data significantly limits the potential of X-ray lasers to reveal sub-nanometer details of micrometer-sized samples. We have developed a new technique of dark-field coherent diffractive imaging to simultaneously overcome the missing data issue and enable us to harness the unique contrast mechanisms available in dark-field microscopy. Images of airborne particulate matter (soot) up to two microns in length were obtained using single-shot diffraction patterns obtained at the Linac Coherent Light Source, four times the size of objects previously imaged in similar experiments. This technique opens the door to femtosecond diffractive imaging of a wide range of micrometer-sized materials that exhibit irreproducible complexity down to the nanoscale, including airborne particulate matter, small cells, bacteria and gold-labeled biological samples.


Assuntos
Elétrons , Imageamento Tridimensional/métodos , Lasers , Simulação por Computador , Microscopia Eletrônica de Transmissão , Fuligem/análise , Fatores de Tempo , Raios X
13.
Phys Rev Lett ; 108(15): 153003, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22587249

RESUMO

We have performed x-ray two-photon photoelectron spectroscopy using the Linac Coherent Light Source x-ray free-electron laser in order to study double core-hole (DCH) states of CO2, N2O, and N2. The experiment verifies the theory behind the chemical sensitivity of two-site DCH states by comparing a set of small molecules with respect to the energy shift of the two-site DCH state and by extracting the relevant parameters from this shift.

14.
Phys Rev Lett ; 108(6): 063007, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401068

RESUMO

Two-color (x-ray+infrared) electron spectroscopy is used for investigating laser-assisted KLL Auger decay following 1s photoionization of atomic Ne with few-femtosecond x-ray pulses from the Linac Coherent Light Source. In an angle-resolved experiment, the overall width of the laser-modified Auger-electron spectrum and its structure change significantly as a function of the emission angle. The spectra are characterized by a strong intensity variation of the sidebands revealing a gross structure. This variation is caused, as predicted by theory, by the interference of electrons emitted at different times within the duration of one optical cycle of the infrared dressing laser, which almost coincides with the lifetime of the Ne 1s vacancy.

15.
Phys Rev Lett ; 108(13): 133401, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22540697

RESUMO

Explosions of large Xe clusters ( ~ 11,000) irradiated by femtosecond pulses of 850 eV x-ray photons focused to an intensity of up to 10(17) W/cm(2) from the Linac Coherent Light Source were investigated experimentally. Measurements of ion charge-state distributions and energy spectra exhibit strong evidence for the formation of a Xe nanoplasma in the intense x-ray pulse. This x-ray produced Xe nanoplasma is accompanied by a three-body recombination and hydrodynamic expansion. These experimental results appear to be consistent with a model in which a spherically exploding nanoplasma is formed inside the Xe cluster and where the plasma temperature is determined by photoionization heating.

16.
Phys Rev Lett ; 108(24): 245005, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23004284

RESUMO

The plasma dynamics of single mesoscopic Xe particles irradiated with intense femtosecond x-ray pulses exceeding 10(16) W/cm2 from the Linac Coherent Light Source free-electron laser are investigated. Simultaneous recording of diffraction patterns and ion spectra allows eliminating the influence of the laser focal volume intensity and particle size distribution. The data show that for clusters illuminated with intense x-ray pulses, highly charged ionization fragments in a narrow distribution are created and that the nanoplasma recombination is efficiently suppressed.

17.
Phys Rev Lett ; 106(8): 083002, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21405568

RESUMO

The nonlinear absorption mechanisms of neon atoms to intense, femtosecond kilovolt x rays are investigated. The production of Ne(9+) is observed at x-ray frequencies below the Ne(8+), 1s(2) absorption edge and demonstrates a clear quadratic dependence on fluence. Theoretical analysis shows that the production is a combination of the two-photon ionization of Ne(8+) ground state and a high-order sequential process involving single-photon production and ionization of transient excited states on a time scale faster than the Auger decay. We find that the nonlinear direct two-photon ionization cross section is orders of magnitude higher than expected from previous calculations.

18.
Phys Rev Lett ; 107(23): 233001, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22182083

RESUMO

We show that high fluence, high-intensity x-ray pulses from the world's first hard x-ray free-electron laser produce nonlinear phenomena that differ dramatically from the linear x-ray-matter interaction processes that are encountered at synchrotron x-ray sources. We use intense x-ray pulses of sub-10-fs duration to first reveal and subsequently drive the 1s↔2p resonance in singly ionized neon. This photon-driven cycling of an inner-shell electron modifies the Auger decay process, as evidenced by line shape modification. Our work demonstrates the propensity of high-fluence, femtosecond x-ray pulses to alter the target within a single pulse, i.e., to unveil hidden resonances, by cracking open inner shells energetically inaccessible via single-photon absorption, and to consequently trigger damaging electron cascades at unexpectedly low photon energies.

19.
Opt Express ; 18(23): 23933-8, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21164739

RESUMO

Materials used for hard x-ray-free-electron laser (XFEL) optics must withstand high-intensity x-ray pulses. The advent of the Linac Coherent Light Source has enabled us to expose candidate optical materials, such as bulk B4C and SiC films, to 0.83 keV XFEL pulses with pulse energies between 1 µJ and 2 mJ to determine short-pulse hard x-ray damage thresholds. The fluence required for the onset of damage for single pulses is around the melt fluence and slightly lower for multiple pulses. We observed strong mechanical cracking in the materials, which may be due to the larger penetration depths of the hard x-rays.

20.
Opt Express ; 18(17): 17620-30, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20721148

RESUMO

The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.


Assuntos
Elétrons , Lasers , Síncrotrons , Desenho de Equipamento , Fibras Ópticas , Fatores de Tempo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA