RESUMO
The steady increase in human population and a rising standard of living heighten global demand for energy. Fossil fuels account for more than three-quarters of energy production, releasing enormous amounts of carbon dioxide (CO2) that drive climate change effects as well as contributing to severe air pollution in many countries. Hence, drastic reduction of CO2 emissions, especially from fossil fuels, is essential to tackle anthropogenic climate change. To reduce CO2 emissions and to cope with the ever-growing demand for energy, it is essential to develop renewable energy sources, of which biofuels will form an important contribution. In this Essay, liquid biofuels from first to fourth generation are discussed in detail alongside their industrial development and policy implications, with a focus on the transport sector as a complementary solution to other environmentally friendly technologies, such as electric cars.
Assuntos
Poluição do Ar , Biocombustíveis , Humanos , Biocombustíveis/análise , Dióxido de Carbono , Combustíveis Fósseis/análise , Mudança ClimáticaRESUMO
BACKGROUND: Cutaneotrichosporon oleaginosus is an oleaginous yeast that can produce up to 80% lipid per dry weight. Its high capacity for the biosynthesis of single cell oil makes it highly interesting for the production of engineered lipids or oleochemicals for industrial applications. However, the genetic toolbox for metabolic engineering of this non-conventional yeast has not yet been systematically expanded. Only three long endogenous promoter sequences have been used for heterologous gene expression, further three dominant and one auxotrophic marker have been established. RESULTS: In this study, the structure of putative endogenous promoter sequences was analyzed based on more than 280 highly expressed genes. The identified motifs of regulatory elements and translational initiation sites were used to annotate the four endogenous putative promoter sequences D9FADp, UBIp, PPIp, and 60Sp. The promoter sequences were tested in a construct regulating the known dominant marker hygromycin B phosphotransferase. The four newly described promoters and the previously established GAPDHp successfully initiated expression of the resistance gene and PPIp was selected for further marker development. The geneticin G418 resistance (aminoglycoside 3'-phosphotransferase, APH) and the nourseothricin resistance gene N-acetyl transferase (NAT) were tested for applicability in C. oleaginosus. Both markers showed high transformation efficiency, positive rate, and were compatible for combined use in a successive and simultaneous manner. CONCLUSIONS: The implementation of four endogenous promoters and one novel dominant resistance markers for C. oleaginosus opens up new opportunities for genetic engineering and strain development. In combination with recently developed methods for targeted genomic integration, the established toolbox allows a wide spectrum of new strategies for genetic and metabolic engineering of the industrially highly relevant yeast.
Assuntos
Basidiomycota , Regiões Promotoras Genéticas/genética , Resistência Microbiana a Medicamentos , Genômica , Engenharia MetabólicaRESUMO
Enzyme-catalyzed reaction cascades play an increasingly important role for the sustainable manufacture of diverse chemicals from renewable feedstocks. For instance, dehydratases from the ilvD/EDD superfamily have been embedded into a cascade to convert glucose via pyruvate to isobutanol, a platform chemical for the production of aviation fuels and other valuable materials. These dehydratases depend on the presence of both a Fe-S cluster and a divalent metal ion for their function. However, they also represent the rate-limiting step in the cascade. Here, catalytic parameters and the crystal structure of the dehydratase from Paralcaligenes ureilyticus (PuDHT, both in presence of Mg2+ and Mn2+ ) were investigated. Rate measurements demonstrate that the presence of stoichiometric concentrations Mn2+ promotes higher activity than Mg2+ , but at high concentrations the former inhibits the activity of PuDHT. Molecular dynamics simulations identify the position of a second binding site for the divalent metal ion. Only binding of Mn2+ (not Mg2+ ) to this site affects the ligand environment of the catalytically essential divalent metal binding site, thus providing insight into an inhibitory mechanism of Mn2+ at higher concentrations. Furthermore, in silico docking identified residues that play a role in determining substrate binding and selectivity. The combined data inform engineering approaches to design an optimal dehydratase for the cascade.
Assuntos
Hidroliases , Sequência de Aminoácidos , Hidroliases/química , Sítios de Ligação , CatáliseRESUMO
BACKGROUND: L-cysteine is an essential chemical building block in the pharmaceutical-, cosmetic-, food and agricultural sector. Conventionally, L-cysteine production relies on the conversion of keratinous biomass mediated by hydrochloric acid. Today, fermentative production based on recombinant E. coli, where L-cysteine production is streamlined and facilitated by synthetic plasmid constructs, is an alternative process at industrial scale. However, metabolic stress and the resulting production escape mechanisms in evolving populations are severely limiting factors during industrial biomanufacturing. We emulate high generation numbers typically reached in industrial fermentation processes with Escherichia coli harbouring L-cysteine production plasmid constructs. So far no genotypic and phenotypic alterations in early and late L-cysteine producing E. coli populations have been studied. RESULTS: In a comparative experimental design, the E. coli K12 production strain W3110 and the reduced genome strain MDS42, almost free of insertion sequences, were used as hosts. Data indicates that W3110 populations acquire growth fitness at the expense of L-cysteine productivity within 60 generations, while production in MDS42 populations remains stable. For the first time, the negative impact of predominantly insertion sequence family 3 and 5 transposases on L-cysteine production is reported, by combining differential transcriptome analysis with NGS based deep plasmid sequencing. Furthermore, metabolic clustering of differentially expressed genes supports the hypothesis, that metabolic stress induces rapid propagation of plasmid rearrangements, leading to reduced L-cysteine yields in evolving populations over industrial fermentation time scales. CONCLUSION: The results of this study implicate how selective deletion of insertion sequence families could be a new route for improving industrial L-cysteine or even general amino acid production using recombinant E. coli hosts. Instead of using minimal genome strains, a selective deletion of certain IS families could offer the benefits of adaptive laboratory evolution (ALE) while maintaining enhanced L-cysteine production stability.
Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Humanos , Escherichia coli/metabolismo , Cisteína/metabolismo , Elementos de DNA Transponíveis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli K12/genética , Fermentação , Estresse Fisiológico , Engenharia Metabólica/métodosRESUMO
The potential of fungi for use as biotechnological factories in the production of a range of valuable metabolites, such as enzymes, terpenes, and volatile aroma compounds, is high. Unlike other microorganisms, fungi mostly secrete secondary metabolites into the culture medium, allowing for easy extraction and analysis. To date, the most commonly used technique in the analysis of volatile organic compounds (VOCs) is gas chromatography, which is time and labour consuming. We propose an alternative ambient screening method that provides rapid chemical information for characterising the VOCs of filamentous fungi in liquid culture using a commercially available ambient dielectric barrier discharge ionisation (DBDI) source connected to a quadrupole-Orbitrap mass spectrometer. The effects of method parameters on measured peak intensities of a series of 8 selected aroma standards were optimised with the best conditions being selected for sample analysis. The developed method was then deployed to the screening of VOCs from samples of 13 fungal strains in three different types of complex growth media showing clear differences in VOC profiles across the different media, enabling determination of best culturing conditions for each compound-strain combination. Our findings underline the applicability of ambient DBDI for the direct detection and comparison of aroma compounds produced by filamentous fungi in liquid culture.
Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas , Meios de Cultura/análise , FungosRESUMO
In nature, chitin, the most abundant marine biopolymer, does not accumulate due to the action of chitinolytic organisms, whose saccharification systems provide instructional blueprints for effective chitin conversion. Therefore, discovery and deconstruction of chitinolytic machineries and associated enzyme systems are essential for the advancement of biotechnological chitin valorization. Through combined investigation of the chitin-induced secretome with differential proteomic and transcriptomic analyses, a holistic system biology approach has been applied to unravel the chitin response mechanisms in the Gram-negative Jeongeupia wiesaeckerbachi. Hereby, the majority of the genome-encoded chitinolytic machinery, consisting of various glycoside hydrolases and a lytic polysaccharide monooxygenase, could be detected extracellularly. Intracellular proteomics revealed a distinct translation pattern with significant upregulation of glucosamine transport, metabolism, and chemotaxis-associated proteins. While the differential transcriptomic results suggested the overall recruitment of more genes during chitin metabolism compared to that of glucose, the detected protein-mRNA correlation was low. As one of the first studies of its kind, the involvement of over 350 unique enzymes and 570 unique genes in the catabolic chitin response of a Gram-negative bacterium could be identified through a three-way systems biology approach. Based on the cumulative data, a holistic model for the chitinolytic machinery of Jeongeupia spp. is proposed.
Assuntos
Proteômica , Transcriptoma , Perfilação da Expressão Gênica , Biotecnologia , QuitinaRESUMO
Shigella species are the main cause of bacillary diarrhoea or shigellosis in humans. These organisms are the inhabitants of the human intestinal tract; however, they are one of the main concerns in public health in both developed and developing countries. In this study, we reviewed and summarised the previous studies and recent advances in molecular mechanisms of pathogenesis of Shigella Dysenteriae and non-Dysenteriae species. Regarding the molecular mechanisms of pathogenesis and the presence of virulence factor encoding genes in Shigella strains, species of this bacteria are categorised into Dysenteriae and non-Dysenteriae clinical groups. Shigella species uses attachment, invasion, intracellular motility, toxin secretion and host cell interruption mechanisms, causing mild diarrhoea, haemorrhagic colitis and haemolytic uremic syndrome diseases in humans through the expression of effector delivery systems, protein effectors, toxins, host cell immune system evasion and iron uptake genes. The investigation of these genes and molecular mechanisms can help us to develop and design new methods to detect and differentiate these organisms in food and clinical samples and determine appropriate strategies to prevent and treat the intestinal and extraintestinal infections caused by these enteric pathogens.
Assuntos
Colite , Disenteria Bacilar , Shigella , Humanos , Shigella dysenteriae/genética , Fatores de Virulência/genéticaRESUMO
Algae-driven processes, such as direct CO2 fixation into glycerol, provide new routes for sustainable chemical production in synergy with greenhouse gas mitigation. The marine microalgae Dunaliella tertiolecta is reported to accumulate high amounts of intracellular glycerol upon exposure to high salt concentrations. We have conducted a comprehensive, time-resolved systems biology study to decipher the metabolic response of D. tertiolecta up to 24 h under continuous light conditions. Initially, due to a lack of reference sequences required for MS/MS-based protein identification, a high-quality draft genome of D. tertiolecta was generated. Subsequently, a database was designed by combining the genome with transcriptome data obtained before and after salt stress. This database allowed for detection of differentially expressed proteins and identification of phosphorylated proteins, which are involved in the short- and long-term adaptation to salt stress, respectively. Specifically, in the rapid salt adaptation response, proteins linked to the Ca2+ signaling pathway and ion channel proteins were significantly increased. While phosphorylation is key in maintaining ion homeostasis during the rapid adaptation to salt stress, phosphofructokinase is required for long-term adaption. Lacking ß-carotene, synthesis under salt stress conditions might be substituted by the redox-sensitive protein CP12. Furthermore, salt stress induces upregulation of Calvin-Benson cycle-related proteins.
Assuntos
Clorofíceas , Glicerol , Glicerol/metabolismo , Espectrometria de Massas em Tandem , Clorofíceas/metabolismo , Fotossíntese , Estresse SalinoRESUMO
BACKGROUND: Gastric cancer has been recognized as the second most probable cause of death in humans from cancer diseases around the world. Postbiotics, supernatant, and metabolites from probiotic microorganisms have recently been used widely to prevent and treat cancer diseases in humans, without any undesirable side effects. This study explores the antiproliferative and antitumor activities of the probiotic Saccharomyces cerevisiae var. boulardii supernatant (SBS) against AGS cancer cells, a human gastric adenocarcinoma cell line. METHODS: We evaluated cell growth inhibitory and mechanical properties of the cytoplasmic membrane and the downregulation of survivin and proinflammatory genes in AGS cells treated with SBS after 24 and 48 h. RESULTS: SBS significantly inhibits the AGS cell growth, and the concentrations with IC50 values after 24 and 48 h treatments are measured as 2266 and 1956 µg/mL, respectively. Regarding the AFM images and Young`s modulus analysis, SBS significantly induces morphological changes in the cytoplasmic membrane of the treated AGS cells. Expression of survivin, NFÆB, and IL-8 genes is significantly suppressed in AGS cells treated with SBS. CONCLUSIONS: Considering the antitumor activities of SBS on AGS cell line, it can be regarded as a prospective therapeutic and preventive strategy against human stomach cancer disease.
Assuntos
Probióticos , Saccharomyces boulardii , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Saccharomyces cerevisiae , Survivina/genética , Probióticos/farmacologia , Probióticos/metabolismo , Expressão Gênica , Membrana Celular/metabolismo , Linhagem Celular TumoralRESUMO
Fatty acid hydratases are unique to microorganisms. Their native function is the oxidation of unsaturated C-C bonds to enable detoxification of environmental toxins. Within this enzyme family, the oleate hydratases (Ohys), which catalyze the hydroxylation of oleic acid to 10-(R)-hydroxy stearic acid (10-HSA) have recently gained particular industrial interest. 10-HSA is considered to be a replacement for 12-(R)-hydroxy stearic acid (12-HSA), which has a broad application in the chemical and pharmaceutical industry. As 12-HSA is obtained through an energy consuming synthesis process, the biotechnological route for sustainable 10-HSA production is of significant industrial interest. All Ohys identified to date have a non-redox active FAD bound in their active site. Ohys can be divided in several subfamilies, that differ in their oligomerization state and the decoration with amino acids in their active sites. The latter observation indicates a different reaction mechanism across those subfamilies. Despite intensive biotechnological, biochemical and structural investigations, surprising little is known about substrate binding and the reaction mechanism of this enzyme family. This review, summarizes our current understanding of Ohys with a focus on sustainable biotransformation.
Assuntos
Hidroliases , Ácido Oleico , Biodegradação Ambiental , Catálise , Domínio Catalítico , Hidroliases/química , Hidroliases/metabolismo , Ácido Oleico/metabolismo , Oxirredução , Ácidos EsteáricosRESUMO
BACKGROUND: Terpene synthases are versatile catalysts in all domains of life, catalyzing the formation of an enormous variety of different terpenoid secondary metabolites. Due to their diverse bioactive properties, terpenoids are of great interest as innovative ingredients in pharmaceutical and cosmetic applications. Recent advances in genome sequencing have led to the discovery of numerous terpene synthases, in particular in Basidiomycota like the wood rotting fungus Coniophora puteana, which further enhances the scope for the manufacture of terpenes for industrial purposes. RESULTS: In this study we describe the identification of two novel (+)-δ-cadinol synthases from C. puteana, Copu5 and Copu9. The sesquiterpene (+)-δ-cadinol was previously shown to exhibit cytotoxic activity therefore having an application as possible, new, and sustainably sourced anti-tumor agent. In an Escherichia coli strain, optimized for sesquiterpene production, titers of 225 mg l-1 and 395 mg l-1, respectively, could be achieved. Remarkably, both enzymes share the same product profile thereby representing the first two terpene synthases from Basidiomycota with identical product profiles. We solved the crystal structure of Copu9 in its closed conformation, for the first time providing molecular details of sesquiterpene synthase from Basidiomycota. Based on the Copu9 structure, we conducted structure-based mutagenesis of amino acid residues lining the active site, thereby altering the product profile. Interestingly, the mutagenesis study also revealed that despite the conserved product profiles of Copu5 and Copu9 different conformational changes may accompany the catalytic cycle of the two enzymes. This observation suggests that the involvement of tertiary structure elements in the reaction mechanism(s) employed by terpene synthases may be more complex than commonly expected. CONCLUSION: The presented product selectivity and titers of Copu5 and Copu9 may pave the way towards a sustainable, biotechnological production of the potentially new bioactive (+)-δ-cadinol. Furthermore, Copu5 and Copu9 may serve as model systems for further mechanistic studies of terpenoid catalysis.
Assuntos
Alquil e Aril Transferases , Basidiomycota , Sesquiterpenos , Alquil e Aril Transferases/genética , Basidiomycota/metabolismo , Sesquiterpenos/metabolismo , Terpenos/metabolismoRESUMO
Flaxseeds are typically consumed either as whole flaxseed, ground flaxseed, flaxseed oil, partially defatted flaxseed meal, or as a milk alternative. They are considered a rich source of vitamins, minerals, proteins and peptides, lipids, carbohydrates, lignans, and dietary fiber, which have shown hypolipidemic, antiatherogenic, anticholesterolemic, and anti-inflammatory property activity. Here, an in vitro batch culture model was used to investigate the influence of whole milled flaxseed and partially defatted milled flaxseed press cake on the gut microbiota and the liberation of flaxseed bioactives. Microbial communities were profiled using 16S rRNA gene-based high-throughput sequencing with targeted mass spectrometry measuring lignan, cyclolinopeptide, and bile acid content and HPLC for short-chain fatty acid profiles. Flaxseed supplementation decreased gut microbiota richness with Firmicutes, Proteobacteria, and Bacteroidetes becoming the predominant phyla. Secoisolariciresinol, enterodiol, and enterolactone were rapidly produced with acetic acid, butyric acid, and propionic acid being the predominant acids after 24 h of fermentation. The flaxseed press cake and whole flaxseed were equivalent in microbiota changes and functionality. However, press cake may be superior as a functional additive in a variety of foods in terms of consumer acceptance as it would be more resistant to oxidative changes.
Assuntos
Linho , Microbioma Gastrointestinal , Lignanas , Anti-Inflamatórios , Ácidos e Sais Biliares , Ácido Butírico , Fibras na Dieta/análise , Ácidos Graxos Voláteis , Linho/metabolismo , Humanos , Lignanas/química , Óleo de Semente do Linho , Metaboloma , Propionatos , RNA Ribossômico 16S/metabolismo , Vitaminas/análiseRESUMO
Terpene synthases are responsible for the biosynthesis of terpenes, the largest family of natural products. Hydropyrene synthase generates hydropyrene and hydropyrenol as its main products along with two byproducts, isoelisabethatrienes A and B. Fascinatingly, a single active site mutation (M75L) diverts the product distribution towards isoelisabethatrienes A and B. In the current work, we study the competing pathways leading to these products using quantum chemical calculations in the gas phase. We show that there is a great thermodynamic preference for hydropyrene and hydropyrenol formation, and hence most likely in the synthesis of the isoelisabethatriene products kinetic control is at play.
RESUMO
The structural diversity in metallo-ß-lactamases (MBLs), especially in the vicinity of the active site, has been a major hurdle in the development of clinically effective inhibitors. Representatives from three variants of the B3 MBL subclass, containing either the canonical HHH/DHH active-site motif (present in the majority of MBLs in this subclass) or the QHH/DHH (B3-Q) or HRH/DQK (B3-RQK) variations, were reported previously. Here, we describe the structure and kinetic properties of the first example (SIE-1) of a fourth variant containing the EHH/DHH active-site motif (B3-E). SIE-1 was identified in the hexachlorocyclohexane-degrading bacterium Sphingobium indicum, and kinetic analyses demonstrate that although it is active against a wide range of antibiotics, its efficiency is lower than that of other B3 MBLs but has increased efficiency toward cephalosporins relative to other ß-lactam substrates. The overall fold of SIE-1 is characteristic of the MBLs; the notable variation is observed in the Zn1 site due to the replacement of the canonical His116 by a glutamate. The unusual preference of SIE-1 for cephalosporins and its occurrence in a widespread environmental organism suggest the scope for increased MBL-mediated ß-lactam resistance. Thus, it is relevant to include SIE-1 in MBL inhibitor design studies to widen the therapeutic scope of much needed antiresistance drugs.
Assuntos
Sphingomonadaceae , beta-Lactamases , Antibacterianos/farmacologia , Domínio Catalítico , Ácido Glutâmico , Sphingomonadaceae/metabolismo , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismoRESUMO
Thin-layer cascades (TLCs) enable algae cultivation at high cell densities, thus increasing biomass yields and facilitating the harvest process. This makes them a promising technology for industrial-scale algal fuel production. Using Life Cycle Assessment (LCA), we calculate the greenhouse gas (GHG) emissions of aviation fuel produced using algal biomass from TLCs. We find that the impact (81 g CO2e per MJ) is lower than that of fuel from algal biomass cultivated in open race way ponds (94 g CO2e). However, neither of the two cultivation systems achieve sufficient GHG savings for compliance with the Renewable Energy Directive II. Seawater desalination in particular dominates the TLC impact, indicating a trade-off between carbon and water footprint. In both cultivation systems, the mixing power and fertilizer consumption present further significant impacts. There is uncertainty in the correlation between mixing power and algal oil yield, which should be investigated by future experimental studies.
Assuntos
Biocombustíveis , Gases de Efeito Estufa , Microalgas/química , BiomassaRESUMO
Terpene synthases generate terpenes employing diversified carbocation chemistry, including highly specific ring formations, proton and hydride transfers, and methyl as well as methylene migrations, followed by reaction quenching. In this enzyme family, the main catalytic challenge is not rate enhancement, but rather structural and reactive control of intrinsically unstable carbocations in order to guide the resulting product distribution. Here we employ multiscale modeling within classical and quantum dynamics frameworks to investigate the reaction mechanism in the diterpene synthase CotB2, commencing with the substrate geranyl geranyl diphosphate and terminating with the carbocation precursor to the final product cyclooctat-9-en-7-ol. The 11-step in-enzyme carbocation cascade is compared with the same reaction in the absence of the enzyme. Remarkably, the free energy profiles in gas phase and in CotB2 are surprisingly similar. This similarity contrasts the multitude of strong π-cation, dipole-cation, and ion-pair interactions between all intermediates in the reaction cascade and the enzyme, suggesting a remarkable balance of interactions in CotB2. We ascribe this balance to the similar magnitude of the interactions between the carbocations along the reaction coordinate and the enzyme environment. The effect of CotB2 mutations is studied using multiscale mechanistic docking, machine learning, and X-ray crystallography, pointing the way for future terpene synthase design.
Assuntos
Alquil e Aril Transferases/metabolismo , Biocatálise , Ciclo-Octanos/química , Ciclo-Octanos/metabolismo , Alquil e Aril Transferases/química , Modelos Moleculares , Conformação Proteica , Teoria QuânticaRESUMO
: Chitin is one of the most abundant biomolecules on earth, occurring in crustacean shells and cell walls of fungi. While the polysaccharide is threatening to pollute coastal ecosystems in the form of accumulating shell-waste, it has the potential to be converted into highly profitable derivatives with applications in medicine, biotechnology, and wastewater treatment, among others. Traditionally this is still mostly done by the employment of aggressive chemicals, yielding low quality while producing toxic by-products. In the last decades, the enzymatic conversion of chitin has been on the rise, albeit still not on the same level of cost-effectiveness compared to the traditional methods due to its multi-step character. Another severe drawback of the biotechnological approach is the highly ordered structure of chitin, which renders it nigh impossible for most glycosidic hydrolases to act upon. So far, only the Auxiliary Activity 10 family (AA10), including lytic polysaccharide monooxygenases (LPMOs), is known to hydrolyse native recalcitrant chitin, which spares the expensive first step of chemical or mechanical pre-treatment to enlarge the substrate surface. The main advantages of enzymatic conversion of chitin over conventional chemical methods are the biocompability and, more strikingly, the higher product specificity, product quality, and yield of the process. Products with a higher Mw due to no unspecific depolymerisation besides an exactly defined degree and pattern of acetylation can be yielded. This provides a new toolset of thousands of new chitin and chitosan derivatives, as the physio-chemical properties can be modified according to the desired application. This review aims to provide an overview of the biotechnological tools currently at hand, as well as challenges and crucial steps to achieve the long-term goal of enzymatic conversion of native chitin into specialty chemical products.
Assuntos
Biotecnologia , Quitina/química , Quitosana/química , Animais , Quitina/isolamento & purificação , Quitina/metabolismo , Quitosana/metabolismo , Crustáceos/metabolismo , Ecossistema , Fungos/metabolismoRESUMO
Terpene cyclases are responsible for the initial cyclization cascade in the multistep synthesis of a large number of terpenes. CotB2 is a diterpene cyclase from Streptomyces melanosporofaciens, which catalyzes the formation of cycloocta-9-en-7-ol, a precursor to the next-generation anti-inflammatory drug cyclooctatin. In this work, we present evidence for the significant role of the active site's residues in CotB2 on the reaction energetics using quantum mechanical calculations in an active site cluster model. The results revealed the significant effect of the active site residues on the relative electronic energy of the intermediates and transition state structures with respect to gas phase data. A detailed understanding of the role of the enzyme environment on the CotB2 reaction cascade can provide important information towards a biosynthetic strategy for cyclooctatin and the biomanufacturing of related terpene structures.
RESUMO
Class I terpene synthases generate the structural core of bioactive terpenoids. Deciphering structure-function relationships in the reactive closed complex and targeted engineering is hampered by highly dynamic carbocation rearrangements during catalysis. Available crystal structures, however, represent the open, catalytically inactive form or harbor nonproductive substrate analogs. Here, we present a catalytically relevant, closed conformation of taxadiene synthase (TXS), the model class I terpene synthase, which simulates the initial catalytic time point. In silico modeling of subsequent catalytic steps allowed unprecedented insights into the dynamic reaction cascades and promiscuity mechanisms of class I terpene synthases. This generally applicable methodology enables the active-site localization of carbocations and demonstrates the presence of an active-site base motif and its dominating role during catalysis. It additionally allowed in silico-designed targeted protein engineering that unlocked the path to alternate monocyclic and bicyclic synthons representing the basis of a myriad of bioactive terpenoids.
Assuntos
Alquil e Aril Transferases/química , Modelos Moleculares , Análise de Sequência de Proteína/métodos , Motivos de Aminoácidos , Catálise , Domínio CatalíticoRESUMO
CO2-induced climate change drives the development of renewable processes for industrial products. Algae processes can actively fix and convert CO2 into value adding products, such as oils. Algae lipids hence counteract climate change and provide access to renewable commodities. In this context, valorization of algal residues remaining after oil extraction is a challenge for the emerging cyclic bioeconomy. This study focuses on the valorization of oil-extracted algae residues derived from the halophilic strain Scenedesmus obliquus via anaerobic digestion. We examined the effect of prior oil extraction on microbial digestibility and increasing salt content in the substrate with regard to biogas yield and composition. Our cumulative data demonstrate that the supercritical CO2 oil extraction acts as a physical pretreatment that facilitates enhanced hydrolysis of both polymeric call wall carbohydrates and cellular proteins, providing methane yields of 213.2 LN kg-1 VS day-1. Methane yields were 20% higher than literature values obtained with the same algae strain in the absence of prior oil extraction. We obtained these superior results albeit all lipids and nonpolar proteins had been extracted from the biogas substrate. Our data indicate that continuous anaerobic digestion without loss of fermentation efficiency is feasible up to a salt concentration of 2% w/v, if conventional, agricultural biogas plants are gradually adapted to the salt content of the substrate. Monofermentation of the investigated oil-extracted algae residue is technically feasible at loading rates of 1.5 kg VS m-3 day-1, but a supplementation with carbohydrate rich biomass would prove beneficial to alleviate ammonia inhibition.