Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 100(2): 297-315, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132687

RESUMO

Homozygous SMN1 loss causes spinal muscular atrophy (SMA), the most common lethal genetic childhood motor neuron disease. SMN1 encodes SMN, a ubiquitous housekeeping protein, which makes the primarily motor neuron-specific phenotype rather unexpected. SMA-affected individuals harbor low SMN expression from one to six SMN2 copies, which is insufficient to functionally compensate for SMN1 loss. However, rarely individuals with homozygous absence of SMN1 and only three to four SMN2 copies are fully asymptomatic, suggesting protection through genetic modifier(s). Previously, we identified plastin 3 (PLS3) overexpression as an SMA protective modifier in humans and showed that SMN deficit impairs endocytosis, which is rescued by elevated PLS3 levels. Here, we identify reduction of the neuronal calcium sensor Neurocalcin delta (NCALD) as a protective SMA modifier in five asymptomatic SMN1-deleted individuals carrying only four SMN2 copies. We demonstrate that NCALD is a Ca2+-dependent negative regulator of endocytosis, as NCALD knockdown improves endocytosis in SMA models and ameliorates pharmacologically induced endocytosis defects in zebrafish. Importantly, NCALD knockdown effectively ameliorates SMA-associated pathological defects across species, including worm, zebrafish, and mouse. In conclusion, our study identifies a previously unknown protective SMA modifier in humans, demonstrates modifier impact in three different SMA animal models, and suggests a potential combinatorial therapeutic strategy to efficiently treat SMA. Since both protective modifiers restore endocytosis, our results confirm that endocytosis is a major cellular mechanism perturbed in SMA and emphasize the power of protective modifiers for understanding disease mechanism and developing therapies.


Assuntos
Endocitose/genética , Atrofia Muscular Espinal/genética , Neurocalcina/metabolismo , Animais , Caenorhabditis elegans/genética , Linhagem Celular , Clonagem Molecular , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Loci Gênicos , Estudo de Associação Genômica Ampla , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/patologia , Atrofia Muscular Espinal/terapia , Neurocalcina/genética , Células PC12 , Linhagem , Ratos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Transcriptoma , Peixe-Zebra/genética
2.
J Neurophysiol ; 115(5): 2330-40, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26823514

RESUMO

Ca(2+)-activated potassium currents [IK(Ca)] are an important link between the intracellular signaling system and the membrane potential, which shapes intrinsic electrophysiological properties. To better understand the ionic mechanisms that mediate intrinsic firing properties of olfactory uniglomerular projection neurons (uPNs), we used whole cell patch-clamp recordings in an intact adult brain preparation of the male cockroach Periplaneta americana to analyze IK(Ca) In the insect brain, uPNs form the principal pathway from the antennal lobe to the protocerebrum, where centers for multimodal sensory processing and learning are located. In uPNs the activation of IK(Ca) was clearly voltage and Ca(2+) dependent. Thus under physiological conditions IK(Ca) is strongly dependent on Ca(2+) influx kinetics and on the membrane potential. The biophysical characterization suggests that IK(Ca) is generated by big-conductance (BK) channels. A small-conductance (SK) channel-generated current could not be detected. IK(Ca) was sensitive to charybdotoxin (CTX) and iberiotoxin (IbTX) but not to apamin. The functional role of IK(Ca) was analyzed in occlusion experiments under current clamp, in which portions of IK(Ca) were blocked by CTX or IbTX. Blockade of IK(Ca) showed that IK(Ca) contributes significantly to intrinsic electrophysiological properties such as the action potential waveform and membrane excitability.


Assuntos
Condutos Olfatórios/fisiologia , Canais de Potássio Cálcio-Ativados/metabolismo , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação , Animais , Apamina/farmacologia , Cálcio/metabolismo , Charibdotoxina/farmacologia , Baratas , Masculino , Condutos Olfatórios/citologia , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Células Receptoras Sensoriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA