Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(24): 5886-5901.e22, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34822784

RESUMO

Current therapies for Alzheimer's disease seek to correct for defective cholinergic transmission by preventing the breakdown of acetylcholine through inhibition of acetylcholinesterase, these however have limited clinical efficacy. An alternative approach is to directly activate cholinergic receptors responsible for learning and memory. The M1-muscarinic acetylcholine (M1) receptor is the target of choice but has been hampered by adverse effects. Here we aimed to design the drug properties needed for a well-tolerated M1-agonist with the potential to alleviate cognitive loss by taking a stepwise translational approach from atomic structure, cell/tissue-based assays, evaluation in preclinical species, clinical safety testing, and finally establishing activity in memory centers in humans. Through this approach, we rationally designed the optimal properties, including selectivity and partial agonism, into HTL9936-a potential candidate for the treatment of memory loss in Alzheimer's disease. More broadly, this demonstrates a strategy for targeting difficult GPCR targets from structure to clinic.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Desenho de Fármacos , Receptor Muscarínico M1/agonistas , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Animais , Pressão Sanguínea/efeitos dos fármacos , Células CHO , Inibidores da Colinesterase/farmacologia , Cricetulus , Cristalização , Modelos Animais de Doenças , Cães , Donepezila/farmacologia , Eletroencefalografia , Feminino , Células HEK293 , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Simulação de Dinâmica Molecular , Degeneração Neural/complicações , Degeneração Neural/patologia , Primatas , Ratos , Receptor Muscarínico M1/química , Transdução de Sinais , Homologia Estrutural de Proteína
2.
Proc Natl Acad Sci U S A ; 119(24): e2201103119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671422

RESUMO

The quaternary organization of rhodopsin-like G protein-coupled receptors in native tissues is unknown. To address this we generated mice in which the M1 muscarinic acetylcholine receptor was replaced with a C-terminally monomeric enhanced green fluorescent protein (mEGFP)-linked variant. Fluorescence imaging of brain slices demonstrated appropriate regional distribution, and using both anti-M1 and anti-green fluorescent protein antisera the expressed transgene was detected in both cortex and hippocampus only as the full-length polypeptide. M1-mEGFP was expressed at levels equal to the M1 receptor in wild-type mice and was expressed throughout cell bodies and projections in cultured neurons from these animals. Signaling and behavioral studies demonstrated M1-mEGFP was fully active. Application of fluorescence intensity fluctuation spectrometry to regions of interest within M1-mEGFP-expressing neurons quantified local levels of expression and showed the receptor was present as a mixture of monomers, dimers, and higher-order oligomeric complexes. Treatment with both an agonist and an antagonist ligand promoted monomerization of the M1-mEGFP receptor. The quaternary organization of a class A G protein-coupled receptor in situ was directly quantified in neurons in this study, which answers the much-debated question of the extent and potential ligand-induced regulation of basal quaternary organization of such a receptor in native tissue when present at endogenous expression levels.


Assuntos
Córtex Cerebral , Hipocampo , Receptor Muscarínico M1 , Animais , Córtex Cerebral/metabolismo , Proteínas de Fluorescência Verde , Hipocampo/metabolismo , Ligantes , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Imagem Óptica , Receptor Muscarínico M1/química , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653950

RESUMO

Several neurodegenerative diseases associated with protein misfolding (Alzheimer's and Parkinson's disease) exhibit oxidative and nitrergic stress following initiation of neuroinflammatory pathways. Associated nitric oxide (NO)-mediated posttranslational modifications impact upon protein functions that can exacerbate pathology. Nonenzymatic and irreversible glycation signaling has been implicated as an underlying pathway that promotes protein misfolding, but the direct interactions between both pathways are poorly understood. Here we investigated the therapeutic potential of pharmacologically suppressing neuroinflammatory NO signaling during early disease progression of prion-infected mice. Mice were injected daily with an NO synthase (NOS) inhibitor at early disease stages, hippocampal gene and protein expression levels of oxidative and nitrergic stress markers were analyzed, and electrophysiological characterization of pyramidal CA1 neurons was performed. Increased neuroinflammatory signaling was observed in mice between 6 and 10 wk postinoculation (w.p.i.) with scrapie prion protein. Their hippocampi were characterized by enhanced nitrergic stress associated with a decline in neuronal function by 9 w.p.i. Daily in vivo administration of the NOS inhibitor L-NAME between 6 and 9 w.p.i. at 20 mg/kg prevented the functional degeneration of hippocampal neurons in prion-diseased mice. We further found that this intervention in diseased mice reduced 3-nitrotyrosination of triose-phosphate isomerase, an enzyme involved in the formation of disease-associated glycation. Furthermore, L-NAME application led to a reduced expression of the receptor for advanced glycation end-products and the diminished accumulation of hippocampal prion misfolding. Our data suggest that suppressing neuroinflammatory NO signaling slows functional neurodegeneration and reduces nitrergic and glycation-associated cellular stress.


Assuntos
Região CA1 Hipocampal/metabolismo , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Doenças Priônicas/metabolismo , Transdução de Sinais , Animais , Camundongos , Camundongos Transgênicos , Óxido Nítrico/genética , Doenças Priônicas/genética
4.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34893539

RESUMO

There are currently no treatments that can slow the progression of neurodegenerative diseases, such as Alzheimer's disease (AD). There is, however, a growing body of evidence that activation of the M1 muscarinic acetylcholine receptor (M1-receptor) can not only restore memory loss in AD patients but in preclinical animal models can also slow neurodegenerative disease progression. The generation of an effective medicine targeting the M1-receptor has however been severely hampered by associated cholinergic adverse responses. By using genetically engineered mouse models that express a G protein-biased M1-receptor, we recently established that M1-receptor mediated adverse responses can be minimized by ensuring activating ligands maintain receptor phosphorylation/arrestin-dependent signaling. Here, we use these same genetic models in concert with murine prion disease, a terminal neurodegenerative disease showing key hallmarks of AD, to establish that phosphorylation/arrestin-dependent signaling delivers neuroprotection that both extends normal animal behavior and prolongs the life span of prion-diseased mice. Our data point to an important neuroprotective property inherent to the M1-receptor and indicate that next generation M1-receptor ligands designed to drive receptor phosphorylation/arrestin-dependent signaling would potentially show low adverse responses while delivering neuroprotection that will slow disease progression.


Assuntos
Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Receptor Muscarínico M1/metabolismo , Animais , Células Cultivadas , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Doenças Priônicas/genética , Receptor Muscarínico M1/genética , Transdução de Sinais
5.
Nat Chem Biol ; 16(3): 240-249, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32080630

RESUMO

Cholinesterase inhibitors, the current frontline symptomatic treatment for Alzheimer's disease (AD), are associated with low efficacy and adverse effects. M1 muscarinic acetylcholine receptors (M1 mAChRs) represent a potential alternate therapeutic target; however, drug discovery programs focused on this G protein-coupled receptor (GPCR) have failed, largely due to cholinergic adverse responses. Employing novel chemogenetic and phosphorylation-deficient, G protein-biased, mouse models, paired with a toolbox of probe molecules, we establish previously unappreciated pharmacologically targetable M1 mAChR neurological processes, including anxiety-like behaviors and hyper-locomotion. By mapping the upstream signaling pathways regulating these responses, we determine the importance of receptor phosphorylation-dependent signaling in driving clinically relevant outcomes and in controlling adverse effects including 'epileptic-like' seizures. We conclude that M1 mAChR ligands that promote receptor phosphorylation-dependent signaling would protect against cholinergic adverse effects in addition to driving beneficial responses such as learning and memory and anxiolytic behavior relevant for the treatment of AD.


Assuntos
Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Animais , Colinérgicos/farmacologia , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Desenho de Fármacos , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação
6.
Nat Chem Biol ; 15(5): 489-498, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30992568

RESUMO

Differentiating actions of short chain fatty acids (SCFAs) at free fatty acid receptor 2 (FFA2) from other free fatty acid-responsive receptors and from non-receptor-mediated effects has been challenging. Using a novel chemogenetic and knock-in strategy, whereby an engineered variant of FFA2 (FFA2-DREADD) that is unresponsive to natural SCFAs but is instead activated by sorbic acid replaced the wild-type receptor, we determined that activation of FFA2 in differentiated adipocytes and colonic crypt enteroendocrine cells of mouse accounts fully for SCFA-regulated lipolysis and release of the incretin glucagon-like peptide-1 (GLP-1), respectively. In vivo studies confirmed the specific role of FFA2 in GLP-1 release and also demonstrated a direct role for FFA2 in accelerating gut transit. Thereby, we establish the general principle that such a chemogenetic knock-in strategy can successfully define novel G-protein-coupled receptor (GPCR) biology and provide both target validation and establish therapeutic potential of a 'hard to target' GPCR.


Assuntos
Ácidos Graxos Voláteis/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Camundongos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G/genética
7.
Annu Rev Pharmacol Toxicol ; 56: 535-59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26738479

RESUMO

Despite the fact that G protein-coupled receptors (GPCRs) are the most successful drug targets in history, this supergene family of cell surface receptors has yet to be fully exploited as targets in the treatment of human disease. Here, we present optimism that this may change in the future by reviewing the substantial progress made in the understanding of GPCR molecular pharmacology that has generated an extensive toolbox of ligand types that include orthosteric, allosteric, and bitopic ligands, many of which show signaling bias. We discuss how combining these advances with recently described transgenic, chemical genetic, and optogenetic animal models will provide the framework to allow for the rational design of next-generation GPCR drugs that possess increased therapeutic efficacy and decreased adverse/toxic responses.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Animais , Descoberta de Drogas/métodos , Humanos , Ligantes , Modelos Animais
8.
Proc Natl Acad Sci U S A ; 113(16): 4524-9, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27071102

RESUMO

G protein-coupled receptors (GPCRs) are known to initiate a plethora of signaling pathways in vitro. However, it is unclear which of these pathways are engaged to mediate physiological responses. Here, we examine the distinct roles of Gq/11-dependent signaling and receptor phosphorylation-dependent signaling in bronchial airway contraction and lung function regulated through the M3-muscarinic acetylcholine receptor (M3-mAChR). By using a genetically engineered mouse expressing a G protein-biased M3-mAChR mutant, we reveal the first evidence, to our knowledge, of a role for M3-mAChR phosphorylation in bronchial smooth muscle contraction in health and in a disease state with relevance to human asthma. Furthermore, this mouse model can be used to distinguish the physiological responses that are regulated by M3-mAChR phosphorylation (which include control of lung function) from those responses that are downstream of G protein signaling. In this way, we present an approach by which to predict the physiological/therapeutic outcome of M3-mAChR-biased ligands with important implications for drug discovery.


Assuntos
Brônquios/metabolismo , Músculo Liso/metabolismo , Receptor Muscarínico M3/metabolismo , Transdução de Sinais/fisiologia , Animais , Brônquios/citologia , Humanos , Camundongos , Camundongos Knockout , Músculo Liso/citologia , Fosforilação/fisiologia , Receptor Muscarínico M3/genética
9.
Mol Pharmacol ; 93(6): 645-656, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29695609

RESUMO

The realization of the therapeutic potential of targeting the M1 muscarinic acetylcholine receptor (mAChR) for the treatment of cognitive decline in Alzheimer's disease has prompted the discovery of M1 mAChR ligands showing efficacy in alleviating cognitive dysfunction in both rodents and humans. Among these is GSK1034702 (7-fluoro-5-methyl-3-[1-(oxan-4-yl)piperidin-4-yl]-1H-benzimidazol-2-one), described previously as a potent M1 receptor allosteric agonist, which showed procognitive effects in rodents and improved immediate memory in a clinical nicotine withdrawal test but induced significant side effects. Here we provide evidence using ligand binding, chemical biology and functional assays to establish that rather than the allosteric mechanism claimed, GSK1034702 interacts in a bitopic manner at the M1 mAChR such that it can concomitantly span both the orthosteric and an allosteric binding site. The bitopic nature of GSK1034702, together with the intrinsic agonist activity and a lack of muscarinic receptor subtype selectivity reported here, all likely contribute to the adverse effects of this molecule in clinical trials. Although they impart beneficial effects on learning and memory, we conclude that these properties are undesirable in a clinical candidate due to the likelihood of adverse side effects. Rather, our data support the notion that "pure" positive allosteric modulators showing selectivity for the M1 mAChR with low levels of intrinsic activity would be preferable to provide clinical efficacy with low adverse responses.


Assuntos
Acetilcolina/metabolismo , Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M1/metabolismo , Receptores Muscarínicos/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Benzimidazóis/farmacologia , Sítios de Ligação/efeitos dos fármacos , Células CHO , Linhagem Celular , Ensaios Clínicos como Assunto , Cricetinae , Cricetulus , Humanos , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar
10.
J Biol Chem ; 291(17): 8862-75, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26826123

RESUMO

Establishing the in vivo activation status of G protein-coupled receptors would not only indicate physiological roles of G protein-coupled receptors but would also aid drug discovery by establishing drug/receptor engagement. Here, we develop a phospho-specific antibody-based biosensor to detect activation of the M1 muscarinic acetylcholine receptor (M1 mAChR) in vitro and in vivo Mass spectrometry phosphoproteomics identified 14 sites of phosphorylation on the M1 mAChR. Phospho-specific antibodies to four of these sites established that serine at position 228 (Ser(228)) on the M1 mAChR showed extremely low levels of basal phosphorylation that were significantly up-regulated by orthosteric agonist stimulation. In addition, the M1 mAChR-positive allosteric modulator, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, enhanced acetylcholine-mediated phosphorylation at Ser(228) These data supported the hypothesis that phosphorylation at Ser(228) was an indicator of M1 mAChR activation. This was further supported in vivo by the identification of phosphorylated Ser(228) on the M1 mAChR in the hippocampus of mice following administration of the muscarinic ligands xanomeline and 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid. Finally, Ser(228) phosphorylation was seen to increase in the CA1 region of the hippocampus following memory acquisition, a response that correlated closely with up-regulation of CA1 neuronal activity. Thus, determining the phosphorylation status of the M1 mAChR at Ser(228) not only provides a means of establishing receptor activation following drug treatment both in vitro and in vivo but also allows for the mapping of the activation status of the M1 mAChR in the hippocampus following memory acquisition thereby establishing a link between M1 mAChR activation and hippocampus-based memory and learning.


Assuntos
Anticorpos Monoclonais Murinos/química , Técnicas Biossensoriais/métodos , Região CA1 Hipocampal/metabolismo , Aprendizagem/fisiologia , Memória/fisiologia , Fosfoproteínas/metabolismo , Receptor Muscarínico M1/metabolismo , Animais , Região CA1 Hipocampal/citologia , Células CHO , Cricetinae , Cricetulus , Camundongos , Fosfoproteínas/genética , Fosforilação/fisiologia , Receptor Muscarínico M1/genética
11.
Front Pharmacol ; 13: 893422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645791

RESUMO

The type 5 metabotropic glutamate receptor, mGlu5, has been proposed as a potential therapeutic target for the treatment of several neurodegenerative diseases. In preclinical neurodegenerative disease models, novel allosteric modulators have been shown to improve cognitive performance and reduce disease-related pathology. A common pathological hallmark of neurodegenerative diseases is a chronic neuroinflammatory response, involving glial cells such as astrocytes and microglia. Since mGlu5 is expressed in astrocytes, targeting this receptor could provide a potential mechanism by which neuroinflammatory processes in neurodegenerative disease may be modulated. This review will discuss current evidence that highlights the potential of mGlu5 allosteric modulators to treat neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Furthermore, this review will explore the role of mGlu5 in neuroinflammatory responses, and the potential for this G protein-coupled receptor to modulate neuroinflammation.

12.
Front Vet Sci ; 9: 977457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213402

RESUMO

Cannabidiol (CBD) containing dog food and treats are widely commercially available, mirroring the growing popularity of CBD as a supplement for humans. Despite this, experimental evidence of the safety and efficacy of long-term oral exposure in dogs is lacking. The purpose of this study was to address the gap in knowledge around the longer-term suitability and tolerance of a broad-spectrum CBD (THC-free) distillate in clinically healthy dogs. The study was a randomized, placebo-controlled, and blinded study where one group of twenty dogs received daily CBD capsules at a dose of 4 mg/kg of body weight (BW) for a period of 6 months. The control group of twenty dogs received placebo capsules. A comprehensive suite of physiological health measures was performed throughout the study at baseline, and after 2, 4, 10, 18, and 26 weeks of exposure, followed by 4 weeks of washout. CBD concentrations were measured at the same cadence in plasma, feces and urine. Health measures included biochemistry, hematology, urinalysis, in addition to fortnightly veterinary examinations, twice daily well-being observations, and a daily quality-of-life survey. Biochemistry and hematology showed no clinically significant alterations apart from a transient elevation in alkaline phosphatase (ALP) in just over half of the dogs receiving CBD. This elevation was observed in the absence of concurrent elevations of other liver parameters, and without any adverse effects on health and wellbeing. Furthermore, bone alkaline phosphatase (BALP) was simultaneously elevated with a significant, strong (r > 0.9) positive correlation between the two measures, suggesting that the elevation of total ALP was at least partly due to the bone-derived isoform. This study provides evidence that a once-daily oral dose of 4 mg CBD/kg BW is well tolerated in clinically healthy dogs for a duration of 6-months.

13.
Sci Signal ; 15(760): eabm3720, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36378750

RESUMO

Many dementias are propagated through the spread of "prion-like" misfolded proteins. This includes prion diseases themselves (such as Creutzfeldt-Jakob disease) and Alzheimer's disease (AD), for which no treatments are available to slow or stop progression. The M1 acetylcholine muscarinic receptor (M1 receptor) is abundant in the brain, and its activity promotes cognitive function in preclinical models and in patients with AD. Here, we investigated whether activation of the M1 receptor might slow the progression of neurodegeneration associated with prion-like misfolded protein in a mouse model of prion disease. Proteomic and transcriptomic analysis of the hippocampus revealed that this model had a molecular profile that was similar to that of human neurodegenerative diseases, including AD. Chronic enhancement of the activity of the M1 receptor with the positive allosteric modulator (PAM) VU0486846 reduced the abundance of prion-induced molecular markers of neuroinflammation and mitochondrial dysregulation in the hippocampus and normalized the abundance of those associated with neurotransmission, including synaptic and postsynaptic signaling components. PAM treatment of prion-infected mice prolonged survival and maintained cognitive function. Thus, allosteric activation of M1 receptors may reduce the severity of neurodegenerative diseases caused by the prion-like propagation of misfolded protein.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doenças Priônicas , Príons , Humanos , Animais , Camundongos , Príons/genética , Doenças Neurodegenerativas/genética , Patologia Molecular , Proteômica , Doenças Priônicas/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo
14.
J Neurosci ; 30(50): 16818-31, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21159953

RESUMO

Nitric oxide (NO) is a signaling molecule that is synthesized in a range of tissues by the NO synthases (NOSs). In the immature nervous system, the neuronal isoform of NOS (NOS1) is often expressed during periods of axon outgrowth and elaboration. However, there is little direct molecular evidence to suggest that NOS1 influences these processes. Here we address the functional role of NOS1 during in vivo zebrafish locomotor circuit development. We show that NOS1 is expressed in a population of interneurons that lie close to nascent motoneurons of the spinal cord. To determine how this protein regulates spinal network assembly, we perturbed NOS1 expression in vivo with antisense morpholino oligonucleotides. This treatment dramatically increased the number of axon collaterals formed by motoneuron axons, an effect mimicked by pharmacological inhibition of the NO/cGMP signaling pathway. In contrast, exogenous elevation of NO/cGMP levels suppressed motor axon branching. These effects were not accompanied by a change in motoneuron number, suggesting that NOS1 does not regulate motoneuron differentiation. Finally we show that perturbation of NO signaling affects the ontogeny of locomotor performance. Our findings provide evidence that NOS1 is a key regulator of motor axon ontogeny in the developing vertebrate spinal cord.


Assuntos
Morfogênese/fisiologia , Óxido Nítrico Sintase Tipo I/fisiologia , Medula Espinal/enzimologia , Medula Espinal/crescimento & desenvolvimento , Peixe-Zebra , Animais , Técnicas de Silenciamento de Genes , Interneurônios/enzimologia , Atividade Motora/fisiologia , Neurônios Motores/citologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/biossíntese , Oligonucleotídeos Antissenso/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Medula Espinal/citologia , Sinapses/metabolismo , Triazenos/farmacologia
15.
Mol Pharmacol ; 79(5): 874-85, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21321061

RESUMO

Positive and negative allosteric modulators (PAMs and NAMs, respectively) of the type 5 metabotropic glutamate (mGlu5) receptor have demonstrable therapeutic potential in an array of neurological and psychiatric disorders. Here, we have used rat cortical astrocytes to investigate how PAMs and NAMs mediate their activity and reveal marked differences between PAMs with respect to their modulation of orthosteric agonist affinity and efficacy. Affinity cooperativity factors (α) were assessed using [(3)H]2-methyl-6-(phenylethynyl)-pyridine (MPEP)-PAM competition binding in the absence and presence of orthosteric agonist, whereas efficacy cooperativity factors (ß) were calculated from net affinity/efficacy cooperativity parameters (αß) obtained from analyses of the abilities of PAMs to potentiate [(3)H]inositol phosphate accumulation in astrocytes stimulated with a submaximal (EC(20)) concentration of orthosteric agonist. We report that whereas 3,3'-difluorobenzaldazine (DFB) and 3-cyano-N-(1,3-diphenyl-1H-prazol-5-yl)benzamide (CDPPB) primarily exert their allosteric modulatory effects through modifying the apparent orthosteric agonist affinity at the astrocyte mGlu5 receptor, the effects of S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidinl-1-yl}-methanone (ADX47273) are mediated primarily via efficacy-driven modulation. In [(3)H]MPEP-NAM competition binding assays, both MPEP and 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine (M-5MPEP) defined similar specific binding components, with affinities that were unaltered in the presence of orthosteric agonist, indicating wholly negative efficacy-driven modulations. It is noteworthy that whereas M-5MPEP only partially inhibited orthosteric agonist-stimulated [(3)H]inositol phosphate accumulation in astrocytes, it could completely suppress Ca(2+) oscillations stimulated by quisqualate or (S)-3,5-dihydroxyphenylglycine. In contrast, MPEP was fully inhibitory with respect to both functional responses. The finding that M-5MPEP has different functional effects depending on the endpoint measured is discussed as a possible example of permissive allosteric antagonism.


Assuntos
Astrócitos/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Regulação Alostérica , Animais , Antagonistas de Aminoácidos Excitatórios/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Piridinas/metabolismo , Piridinas/farmacologia , Ensaio Radioligante , Ratos , Ratos Wistar , Receptor de Glutamato Metabotrópico 5
16.
Animals (Basel) ; 11(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066292

RESUMO

An appropriate energy intake for healthy growth can reduce the risk of obesity and co-morbidities, such as orthopaedic diseases. The 2006 National Research Council (NRC) universal equation calculates the energy requirement of growing dogs based on predicted adult body weight, but evidence suggests a revision may be required. This study investigates the energy requirements of seventeen Norfolk terrier puppies over their first year (10 to 52 weeks). Puppies were individually fed complete and balanced diets in amounts to maintain an optimal body condition score (BCS), recording intake daily and body weight and BCS weekly. To monitor health a veterinary examination, haematology and plasma biochemistry and serum measures of bone turnover were undertaken every 12 weeks. Skeletal development was assessed using dual-energy X-ray absorptiometry (26 and 52 weeks). Puppies were clinically healthy with normal skeletal development and healthy growth throughout. The energy intake to achieve this was significantly lower than that predicted by the NRC (2006) equation at all time points, with largest mean difference of 285 kJ/kg0.75 per day at 10 weeks. If fed according to the NRC 2006 equation, dogs would have been in positive energy balance, possibly leading to obesity. These data support a revision to the NRC (2006) equation.

17.
Animals (Basel) ; 11(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070579

RESUMO

Collar-mounted canine activity monitors can use accelerometer data to estimate dog activity levels, step counts, and distance traveled. With recent advances in machine learning and embedded computing, much more nuanced and accurate behavior classification has become possible, giving these affordable consumer devices the potential to improve the efficiency and effectiveness of pet healthcare. Here, we describe a novel deep learning algorithm that classifies dog behavior at sub-second resolution using commercial pet activity monitors. We built machine learning training databases from more than 5000 videos of more than 2500 dogs and ran the algorithms in production on more than 11 million days of device data. We then surveyed project participants representing 10,550 dogs, which provided 163,110 event responses to validate real-world detection of eating and drinking behavior. The resultant algorithm displayed a sensitivity and specificity for detecting drinking behavior (0.949 and 0.999, respectively) and eating behavior (0.988, 0.983). We also demonstrated detection of licking (0.772, 0.990), petting (0.305, 0.991), rubbing (0.729, 0.996), scratching (0.870, 0.997), and sniffing (0.610, 0.968). We show that the devices' position on the collar had no measurable impact on performance. In production, users reported a true positive rate of 95.3% for eating (among 1514 users), and of 94.9% for drinking (among 1491 users). The study demonstrates the accurate detection of important health-related canine behaviors using a collar-mounted accelerometer. We trained and validated our algorithms on a large and realistic training dataset, and we assessed and confirmed accuracy in production via user validation.

18.
J Pharmacol Exp Ther ; 334(3): 795-808, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20507928

RESUMO

Glucagon-like peptide-1 (GLP-1) mediates antidiabetogenic effects through the GLP-1 receptor (GLP-1R), which is targeted for the treatment of type 2 diabetes. Small-molecule GLP-1R agonists have been sought due to difficulties with peptide therapeutics. Recently, 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (compound 2) has been described as a GLP-1R allosteric modulator and agonist. Using human embryonic kidney-293 cells expressing human GLP-1Rs, we extended this work to consider the impact of compound 2 on G protein activation, Ca(2+) signaling and receptor internalization and particularly to compare compound 2 and GLP-1 across a range of functional assays in intact cells. GLP-1 and compound 2 activated Galpha(s) in cell membranes and increased cellular cAMP in intact cells, with compound 2 being a partial and almost full agonist, respectively. GLP-1 increased intracellular [Ca(2+)] by release from intracellular stores, which was mimicked by compound 2, with slower kinetics. In either intact cells or membranes, the orthosteric antagonist exendin-(9-39), inhibited GLP-1 cAMP generation but increased the efficacy of compound 2. GLP-1 internalized enhanced green fluorescent protein-tagged GLP-1Rs, but the speed and magnitude evoked by compound 2 were less. Exendin-(9-39) inhibited internalization by GLP-1 and also surprisingly that by compound 2. Compound 2 displays GLP-1R agonism consistent with action at an allosteric site, although an orthosteric antagonist increased its efficacy on cAMP and blocked compound 2-mediated receptor internalization. Full assessment of the properties of compound 2 was potentially hampered by damaging effects that were particularly manifest in either longer term assays with intact cells or in acute assays with membranes.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/farmacologia , Fragmentos de Peptídeos/farmacologia , Quinoxalinas/farmacologia , Receptores de Glucagon/efeitos dos fármacos , Sulfonas/farmacologia , Biotransformação/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular , AMP Cíclico/metabolismo , Interpretação Estatística de Dados , Proteínas de Ligação ao GTP/metabolismo , Peptídeo 1 Semelhante ao Glucagon/biossíntese , Receptor do Peptídeo Semelhante ao Glucagon 1 , Proteínas de Fluorescência Verde , Humanos , Ligantes , Fragmentos de Peptídeos/biossíntese , Receptores de Glucagon/biossíntese , Transdução de Sinais/efeitos dos fármacos , Azul Tripano
19.
Adv Pharmacol ; 88: 277-310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32416870

RESUMO

The M1 muscarinic acetylcholine receptor (mAChR) plays a crucial role in learning and memory processes and has long been identified as a promising therapeutic target for the improvement of cognitive decline in Alzheimer's disease (AD). As such, clinical trials with xanomeline, a mAChR orthosteric agonist, showed an improvement in cognitive and behavioral symptoms associated with AD. Despite this, the clinical utility of xanomeline was hampered by a lack of M1 receptor selectivity and adverse cholinergic responses attributed to activation of peripheral M2 and M3 mAChRs. More recently, efforts have focused on developing more selective M1 compounds via targeting the less-conserved allosteric binding pockets. As such, positive allosteric modulators (PAMs) have emerged as an exciting strategy to achieve exquisite selectivity for the M1 mAChR in order to deliver improvements in cognitive function in AD. Furthermore, over recent years it has become increasingly apparent that M1 therapeutics may also offer disease-modifying effects in AD, due to the modulation of pathogenic amyloid processing. This article will review the progress made in the development of M1 selective ligands for the treatment of cognitive decline in AD, and will discuss the current evidence that selective targeting of the M1 mAChR could also have the potential to modify AD progression.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Terapia de Alvo Molecular , Receptor Muscarínico M1/metabolismo , Regulação Alostérica , Animais , Descoberta de Drogas , Humanos , Agonistas Muscarínicos/uso terapêutico , Receptor Muscarínico M1/agonistas
20.
Front Pharmacol ; 11: 606656, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584282

RESUMO

The M1 and M4 muscarinic acetylcholine receptors (mAChRs) are highly pursued drug targets for neurological diseases, in particular for Alzheimer's disease and schizophrenia. Due to high sequence homology, selective targeting of any of the M1-M5 mAChRs through the endogenous ligand binding site has been notoriously difficult to achieve. With the discovery of highly subtype selective mAChR positive allosteric modulators in the new millennium, selectivity through targeting an allosteric binding site has opened new avenues for drug discovery programs. However, some hurdles remain to be overcome for these promising new drug candidates to progress into the clinic. One challenge is the potential for on-target side effects, such as for the M1 mAChR where over-activation of the receptor by orthosteric or allosteric ligands can be detrimental. Therefore, in addition to receptor subtype selectivity, a drug candidate may need to exhibit a biased signaling profile to avoid such on-target adverse effects. Indeed, recent studies in mice suggest that allosteric modulators for the M1 mAChR that bias signaling toward specific pathways may be therapeutically important. This review brings together details on the signaling pathways activated by the M1 and M4 mAChRs, evidence of biased agonism at these receptors, and highlights pathways that may be important for developing new subtype selective allosteric ligands to achieve therapeutic benefit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA