Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioorg Med Chem Lett ; 25(19): 4143-7, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26303893

RESUMO

A novel, potent series of glucagon receptor antagonists (GRAs) was discovered. These indazole- and indole-based compounds were designed on an earlier pyrazole-based GRA lead MK-0893. Structure-activity relationship (SAR) studies were focused on the C3 and C6 positions of the indazole core, as well as the benzylic position on the N-1 of indazole. Multiple potent GRAs were identified with excellent in vitro profiles and good pharmacokinetics in rat. Among them, GRA 16d was found to be orally active in blunting glucagon induced glucose excursion in an acute glucagon challenge model in glucagon receptor humanized (hGCGR) mice at 1, 3 and 10mg/kg (mpk), and significantly lowered acute glucose levels in hGCGR ob/ob mice at 3 mpk dose.


Assuntos
Indazóis/química , Indazóis/farmacologia , Indóis/química , Indóis/farmacologia , Receptores de Glucagon/antagonistas & inibidores , Animais , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Obesos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
2.
Br Dent J ; 233(12): 1022-1028, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36526775

RESUMO

Introduction This survey reports the incidence of traumatic dental injuries in an adult population attending an adult dental trauma clinic in a London teaching hospital.Materials and methods Retrospective data were collected from patients attending an adult dental trauma clinic between 2012 and 2018.Results In total, 1,769 patients attended, with more men seen (1,030; 58.2%) compared to women (739; 41.8%) and this was statistically significant (p <0.05). The most common aetiological factor was an accidental fall (728; 41.15%), followed by assaults (413; 23.35%), bicycle accidents (253; 14.3%), sports injuries (132; 7.46%) and road traffic accidents (84; 4.75%). Lateral luxation (833) was the most common traumatic injury and this was followed by avulsions (362; 17%). Enamel-dentine fractures were the most common type of fracture injury (1,273; 64%).Discussion This retrospective survey attempts to report on the incidence of traumatic dental injuries in a London-based cohort of patients attending a specialised dental trauma clinic. In line with other reports, there were more men than women affected, which is probably attributed to behavioural activities.Conclusion(s) Accidental falls are the most common cause of a traumatic dental injury, lateral luxation was the most common type of displacement injury and enamel-dentine fractures were the most common type of fracture injury.


Assuntos
Avulsão Dentária , Fraturas dos Dentes , Traumatismos Dentários , Masculino , Humanos , Adulto , Feminino , Traumatismos Dentários/epidemiologia , Traumatismos Dentários/etiologia , Estudos Retrospectivos , Londres/epidemiologia , Fraturas dos Dentes/epidemiologia , Fraturas dos Dentes/etiologia
3.
Bioorg Med Chem Lett ; 21(1): 76-81, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21147532

RESUMO

A novel class of 1,3,5-pyrazoles has been discovered as potent human glucagon receptor antagonists. Notably, compound 26 is orally bioavailable in several preclinical species and shows selectivity towards cardiac ion channels, other family B receptors such hGIP and hGLP1, and a large panel of enzymes and additional receptors. When dosed orally, compound 26 is efficacious in suppressing glucagon induced plasma glucose excursion in rhesus monkey and transgenic murine pharmacodynamic models at 1 and 10 mpk, respectively.


Assuntos
Pirazóis/química , Receptores de Glucagon/antagonistas & inibidores , Administração Oral , Animais , Glicemia/metabolismo , Cães , Avaliação Pré-Clínica de Medicamentos , Humanos , Macaca mulatta , Camundongos , Camundongos Transgênicos , Pirazóis/síntese química , Pirazóis/farmacocinética , Ratos , Receptores de Glucagon/metabolismo , Relação Estrutura-Atividade
4.
J Med Chem ; 61(3): 681-694, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316397

RESUMO

G protein-coupled receptor 40 (GPR40) has become an attractive target for the treatment of diabetes since it was shown clinically to promote glucose-stimulated insulin secretion. Herein, we report our efforts to develop highly selective and potent GPR40 agonists with a dual mechanism of action, promoting both glucose-dependent insulin and incretin secretion. Employing strategies to increase polarity and the ratio of sp3/sp2 character of the chemotype, we identified BMS-986118 (compound 4), which showed potent and selective GPR40 agonist activity in vitro. In vivo, compound 4 demonstrated insulinotropic efficacy and GLP-1 secretory effects resulting in improved glucose control in acute animal models.


Assuntos
Descoberta de Drogas , Pirazóis/farmacologia , Pirazóis/farmacocinética , Receptores Acoplados a Proteínas G/agonistas , Administração Oral , Animais , Disponibilidade Biológica , Humanos , Masculino , Camundongos , Modelos Moleculares , Conformação Molecular , Pirazóis/administração & dosagem , Pirazóis/química , Pirrolidinas/química
5.
Eur J Pharmacol ; 501(1-3): 225-34, 2004 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-15464082

RESUMO

Glucagon receptor antagonists have been actively pursued as potential therapeutics for the treatment of type 2 diabetes. Peptidyl and non-peptidyl glucagon receptor antagonists have been shown to block glucagon-induced blood glucose elevation in both animals and humans. How the antagonists and the glucagon receptor interact in vivo has not been reported and is the subject of the current study. Using (125)I-labeled glucagon as a radiotracer, we developed an in vivo glucagon receptor occupancy assay in mice expressing a human glucagon receptor in place of the endogenous mouse glucagon receptor (hGCGR mice). Using this assay, we first showed that the glucagon receptor is expressed predominantly in liver, to a much lesser extent in kidney, and is below detection in several other tissues/organs in the mice. We subsequently showed that, at 2 mg/kg body weight (mg/pk) dosed intraperitoneally (i.p.), peptidyl glucagon receptor antagonist des-His-glucagon binds to approximately 78% of the hepatic glucagon receptor and blocks an exogenous glucagon-induced blood glucose elevation in the mice. Finally, we also showed that, at 10 and 30 mg/kg dosed orally (p.o.), compound A, a non-peptidyl small molecule glucagon receptor antagonist, occupied 65-70% of the hepatic glucagon receptor, and significantly diminished exogenous glucagon-induced blood glucose elevation in the mice. At 3 mg/kg, however, compound A occupied only approximately 39% of the hepatic glucagon receptor and did not affect exogenous glucagon-induced blood glucose elevation in the mice. Taken together, the results confirmed previous reports that glucagon receptors are present predominantly in the liver, and provide the first direct evidence that peptidyl and non-peptidyl glucagon receptor antagonists bind to the hepatic glucagon receptor in vivo, and that at least 60% receptor occupancy correlates with the glucose lowering efficacy by the antagonists in vivo.


Assuntos
Glicemia/metabolismo , Glucagon/análogos & derivados , Glucagon/farmacologia , Hipoglicemiantes/farmacologia , Fígado/metabolismo , Receptores de Glucagon/antagonistas & inibidores , Receptores de Peptídeos/antagonistas & inibidores , Animais , Glicemia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glucagon/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Receptores de Glucagon/metabolismo , Receptores de Peptídeos/metabolismo
6.
PLoS One ; 7(11): e49572, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185367

RESUMO

Hyperglucagonemia is implicated in the pathophysiology of hyperglycemia. Antagonism of the glucagon receptor (GCGR) thus represents a potential approach to diabetes treatment. Herein we report the characterization of GRA1, a novel small-molecule GCGR antagonist that blocks glucagon binding to the human GCGR (hGCGR) and antagonizes glucagon-induced intracellular accumulation of cAMP with nanomolar potency. GRA1 inhibited glycogenolysis dose-dependently in primary human hepatocytes and in perfused liver from hGCGR mice, a transgenic line of mouse that expresses the hGCGR instead of the murine GCGR. When administered orally to hGCGR mice and rhesus monkeys, GRA1 blocked hyperglycemic responses to exogenous glucagon. In several murine models of diabetes, acute and chronic dosing with GRA1 significantly reduced blood glucose concentrations and moderately increased plasma glucagon and glucagon-like peptide-1. Combination of GRA1 with a dipeptidyl peptidase-4 inhibitor had an additive antihyperglycemic effect in diabetic mice. Hepatic gene-expression profiling in monkeys treated with GRA1 revealed down-regulation of numerous genes involved in amino acid catabolism, an effect that was paralleled by increased amino acid levels in the circulation. In summary, GRA1 is a potent glucagon receptor antagonist with strong antihyperglycemic efficacy in preclinical models and prominent effects on hepatic gene-expression related to amino acid metabolism.


Assuntos
Regulação da Expressão Gênica , Hipoglicemiantes/farmacologia , Pirazóis/farmacologia , Receptores de Glucagon/antagonistas & inibidores , beta-Alanina/análogos & derivados , Administração Oral , Animais , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Glucagon/sangue , Glucagon/química , Glicogênio/metabolismo , Glicogenólise , Hepatócitos/efeitos dos fármacos , Hormônios/sangue , Humanos , Radioisótopos do Iodo/química , Fígado/metabolismo , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Químicos , beta-Alanina/farmacologia
7.
Bioorg Med Chem Lett ; 17(3): 587-92, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17126016

RESUMO

A series of conformationally constrained tri-substituted ureas were synthesized, and their potential as glucagon receptor antagonists was evaluated. This effort resulted in the identification of compound 4a, which had a binding IC50 of 4.0 nM and was shown to reduce blood glucose levels at 3 mg/kg in glucagon-challenged mice containing a humanized glucagon receptor. Compound 4a was efficacious in correcting hyperglycemia induced by a high fat diet in transgenic mice at an oral dose as low as 3 mg/kg.


Assuntos
Receptores de Glucagon/antagonistas & inibidores , Ureia/análogos & derivados , Ureia/síntese química , Animais , Glicemia/metabolismo , Células CHO , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Gorduras na Dieta , Desenho de Fármacos , Polipeptídeo Inibidor Gástrico/metabolismo , Glucagon/antagonistas & inibidores , Meia-Vida , Humanos , Hiperglicemia/induzido quimicamente , Hiperglicemia/prevenção & controle , Indicadores e Reagentes , Camundongos , Camundongos Transgênicos , Conformação Molecular , Receptores de Glucagon/genética , Ureia/farmacologia
8.
Bioorg Med Chem Lett ; 15(5): 1401-5, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15713396

RESUMO

A novel class of antagonists of the human glucagon receptor (hGCGR) has been discovered. Systematic modification of the lead compound identified substituents that were essential for activity and those that were amenable to further optimization. This SAR exploration resulted in the synthesis of 13, which exhibited good potency as an hGCGR functional antagonist (IC50 = 34 nM) and moderate bioavailability (36% in mice).


Assuntos
Receptores de Glucagon/antagonistas & inibidores , Tiofenos/síntese química , Tiofenos/farmacologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/classificação
9.
Bioorg Med Chem Lett ; 15(20): 4564-9, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16102966

RESUMO

A novel class of spiro-ureas has been discovered as potent human glucagon receptor antagonists in both binding and functional assays. Preliminary studies have revealed that compound 15 is an orally active human glucagon receptor antagonist in a transgenic murine pharmacodynamic model at 10 and 30 mpk. Compound 15 is orally bioavailable in several preclinical species and shows selectivity toward cardiac ion channels and other family B receptors, such as hGIP1 and hGLP.


Assuntos
Receptores de Glucagon/antagonistas & inibidores , Compostos de Espiro/farmacologia , Ureia/farmacologia , Administração Oral , Animais , Células CHO , Cricetinae , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Compostos de Espiro/química , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA