RESUMO
In the context of a demand for "preservative-free" food products, biopreservation appears as a promising alternative to either replace or reduce the use of chemical preservatives. The purpose of this study was to evaluate the antifungal activity of a collection of lactic acid bacteria (nâ¯=â¯194), and then to evaluate the applicability and efficacy of selected ones used as bioprotective cultures against mold spoilers in dairy and bakery products. First, lactic acid bacteria were isolated from various Algerian raw milk samples and Amoredj, a traditional fermented product. Secondly, in vitro screening tests against Mucor racemosus UBOCC-A-109155, Penicillium commune UBOCC-A-116003, Yarrowia lipolytica UBOCC-A-216006, Aspergillus tubingensis AN, Aspergillus flavus T5 and Paecilomyces formosus AT allowed for the selection of 3 active strains, namely Lactobacillus plantarum CH1, Lactobacillus paracasei B20 and Leuconostoc mesenteroides L1. In situ tests were then performed to validate their activity in actual products (sour cream and sourdough bread) challenged with fungal spoilers. These tests showed that antifungal LAB could slow the fungal target growth and could be candidates of interest for industrial applications. Finally, organic acids and various antifungal compounds produced in sour cream and sourdough bread by the selected LAB, and thus potentially supporting the observed antifungal activity, were identified and quantified by HPLC and LC-QTOF.
Assuntos
Antifúngicos/farmacologia , Laticínios/microbiologia , Microbiologia de Alimentos , Conservantes de Alimentos/farmacologia , Lactobacillales/fisiologia , Animais , Antibiose , Antifúngicos/metabolismo , Pão/microbiologia , Alimentos Fermentados/microbiologia , Conservantes de Alimentos/metabolismo , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Lactobacillales/isolamento & purificação , Lactobacillales/metabolismo , Leite/microbiologiaRESUMO
Botrytis cinerea, responsible for grey mold, represents the first biological cause of fruit and vegetable spoilage phenomena in post-harvest. Kiwifruit is a climacteric fruit particularly prone to this mold infestation during storage. Lactic acid bacteria (LAB) are food-grade bacteria that can synthesize several metabolites with antimicrobial activity and are, therefore, suggested as promising and eco-friendly resources for the bio-control of molds on fruits and vegetables. In this work, we propose the screening of a collection of 300 LAB previously isolated from traditional sourdoughs for their ability to counteract in vitro the growth of Botrytis cinerea CECT 20973. Only 2% of tested LAB strains belonging to Lactiplantibacillus plantarum species, exerted a strong antagonism against B. cinerea. The cell-free supernatants were partially characterized and results clearly indicated that high levels of lactic acid contributed to the antagonistic activity. PAN01 and UFG 121 cell-free supernatants were investigated as potential bio-control agents in a preliminary in vivo assay using freshly cut kiwifruits as a food model. The application of cell-free supernatants allowed to delay the growth of B. cinerea on artificially contaminated kiwifruits until two weeks. The antagonistic activity was greatly affected by the storage temperature (25 °C and 4 °C) selected for the processed fruits, suggesting the importance to include microbial-based solution in a broader framework of hurdle technologies.
RESUMO
While increased P-hydrolysing acid phosphatases (APase) activity in bean nodules is well documented under phosphorus (P) limitation, gene expression and subcellular localization patterns within the N2-fixing nodule tissues are poorly understood. The aim of this research was to track the enzyme activity along with the intra-nodular localization of fructose-1,6-bisphosphatase (FBPase), and its contribution to P use efficiency (PUE) under symbiotic nitrogen fixation (SNF) in Phaseolus vulgaris. The FBPase transcript were localized in situ using RT-PCR and the protein activity was measured in nodules of two contrasting recombinant inbred lines (RILs) of P. vulgaris, namely RILs 115 (P-efficient) and 147 (P-inefficient), that were grown under sufficient versus deficient P supply. Under P-deficiency, higher FBPase transcript fluorescence was found in the inner cortex as compared to the infected zone of RIL115. In addition, both the specific FBPase and total APase enzyme activities significantly increased in both RILs, but to a more significant extent in RIL115 as compared to RIL147. Furthermore, the increased FBPase activity in nodules of RIL115 positively correlated with higher use efficiency of both the rhizobial symbiosis (23%) and P for SNF (14% calculated as the ratio of N2 fixed per nodule total P content). It is concluded that the abundant tissue-specific localized FBPase transcript along with induced enzymatic activity provides evidence of a specific tolerance mechanism where N2-fixing nodules overexpress under P-deficiency conditions. Such a mechanism would maximise the intra-nodular inorganic P fraction necessary to compensate for large amount of P needed during the SNF process.