Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 27(22): 5014-5021, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29032026

RESUMO

The continued emergence of bacteria resistant to current standard of care antibiotics presents a rapidly growing threat to public health. New chemical entities (NCEs) to treat these serious infections are desperately needed. Herein we report the discovery, synthesis, SAR and in vivo efficacy of a novel series of 4-hydroxy-2-pyridones exhibiting activity against Gram-negative pathogens. Compound 1c, derived from the N-debenzylation of 1b, preferentially inhibits bacterial DNA synthesis as determined by standard macromolecular synthesis assays. The structural features of the 4-hydroxy-2-pyridone scaffold required for antibacterial activity were explored and compound 6q, identified through further optimization of the series, had an MIC90 value of 8 µg/mL against a panel of highly resistant strains of E. coli. In a murine septicemia model, compound 6q exhibited a PD50 of 8 mg/kg in mice infected with a lethal dose of E. coli. This novel series of 4-hydroxy-2-pyridones serves as an excellent starting point for the identification of NCEs treating Gram-negative infections.


Assuntos
Antibacterianos/metabolismo , Compostos Azabicíclicos/química , DNA/metabolismo , Niacina/análogos & derivados , Piridinas/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/metabolismo , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , DNA/química , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Meia-Vida , Camundongos , Testes de Sensibilidade Microbiana , Niacina/metabolismo , Niacina/farmacologia , Niacina/uso terapêutico , Piridinas/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Relação Estrutura-Atividade
2.
Nature ; 447(7140): 87-91, 2007 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-17450125

RESUMO

Nonsense mutations promote premature translational termination and cause anywhere from 5-70% of the individual cases of most inherited diseases. Studies on nonsense-mediated cystic fibrosis have indicated that boosting specific protein synthesis from <1% to as little as 5% of normal levels may greatly reduce the severity or eliminate the principal manifestations of disease. To address the need for a drug capable of suppressing premature termination, we identified PTC124-a new chemical entity that selectively induces ribosomal readthrough of premature but not normal termination codons. PTC124 activity, optimized using nonsense-containing reporters, promoted dystrophin production in primary muscle cells from humans and mdx mice expressing dystrophin nonsense alleles, and rescued striated muscle function in mdx mice within 2-8 weeks of drug exposure. PTC124 was well tolerated in animals at plasma exposures substantially in excess of those required for nonsense suppression. The selectivity of PTC124 for premature termination codons, its well characterized activity profile, oral bioavailability and pharmacological properties indicate that this drug may have broad clinical potential for the treatment of a large group of genetic disorders with limited or no therapeutic options.


Assuntos
Códon sem Sentido/genética , Doenças Genéticas Inatas/tratamento farmacológico , Doenças Genéticas Inatas/genética , Oxidiazóis/farmacologia , Oxidiazóis/uso terapêutico , Biossíntese de Proteínas/efeitos dos fármacos , Alelos , Animais , Disponibilidade Biológica , Distrofina/biossíntese , Distrofina/genética , Doenças Genéticas Inatas/sangue , Humanos , Camundongos , Camundongos Endogâmicos mdx , Oxidiazóis/administração & dosagem , Oxidiazóis/farmacocinética , Fenótipo , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato
3.
Elife ; 112022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35137690

RESUMO

Antibiotic-resistant Neisseria gonorrhoeae (Ng) are an emerging public health threat due to increasing numbers of multidrug resistant (MDR) organisms. We identified two novel orally active inhibitors, PTC-847 and PTC-672, that exhibit a narrow spectrum of activity against Ng including MDR isolates. By selecting organisms resistant to the novel inhibitors and sequencing their genomes, we identified a new therapeutic target, the class Ia ribonucleotide reductase (RNR). Resistance mutations in Ng map to the N-terminal cone domain of the α subunit, which we show here is involved in forming an inhibited α4ß4 state in the presence of the ß subunit and allosteric effector dATP. Enzyme assays confirm that PTC-847 and PTC-672 inhibit Ng RNR and reveal that allosteric effector dATP potentiates the inhibitory effect. Oral administration of PTC-672 reduces Ng infection in a mouse model and may have therapeutic potential for treatment of Ng that is resistant to current drugs.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Gonorreia/tratamento farmacológico , Piridinas/farmacologia , Ribonucleotídeo Redutases/metabolismo , Regulação Alostérica , Animais , Nucleotídeos de Desoxiadenina/metabolismo , Modelos Animais de Doenças , Escherichia coli/efeitos dos fármacos , Feminino , Gonorreia/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos , Neisseria gonorrhoeae/efeitos dos fármacos
4.
Front Oncol ; 12: 832816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223511

RESUMO

Blocking the pyrimidine nucleotide de novo synthesis pathway by inhibiting dihydroorotate dehydrogenase (DHODH) results in the cell cycle arrest and/or differentiation of rapidly proliferating cells including activated lymphocytes, cancer cells, or virally infected cells. Emvododstat (PTC299) is an orally bioavailable small molecule that inhibits DHODH. We evaluated the potential for emvododstat to inhibit the progression of acute myeloid leukemia (AML) using several in vitro and in vivo models of the disease. Broad potent activity was demonstrated against multiple AML cell lines, AML blasts cultured ex vivo from patient blood samples, and AML tumor models including patient-derived xenograft models. Emvododstat induced differentiation, cytotoxicity, or both in primary AML patient blasts cultured ex vivo with 8 of 10 samples showing sensitivity. AML cells with diverse driver mutations were sensitive, suggesting the potential of emvododstat for broad therapeutic application. AML cell lines that are not sensitive to emvododstat are likely to be more reliant on the salvage pathway than on de novo synthesis of pyrimidine nucleotides. Pharmacokinetic experiments in rhesus monkeys demonstrated that emvododstat levels rose rapidly after oral administration, peaking about 2 hours post-dosing. This was associated with an increase in the levels of dihydroorotate (DHO), the substrate for DHODH, within 2 hours of dosing indicating that DHODH inhibition is rapid. DHO levels declined as drug levels declined, consistent with the reversibility of DHODH inhibition by emvododstat. These preclinical findings provide a rationale for clinical evaluation of emvododstat in an ongoing Phase 1 study of patients with relapsed/refractory acute leukemias.

5.
Artigo em Inglês | MEDLINE | ID: mdl-21505237

RESUMO

The rational design of novel antibiotics for bacteria involves the identification of inhibitors for enzymes involved in essential biochemical pathways in cells. In this study, the cloning, expression, purification, crystallization and structure of the enzyme peptidyl-tRNA hydrolase from Francisella tularensis, the causative agent of tularemia, was performed. The structure of F. tularensis peptidyl-tRNA hydrolase is comparable to those of other bacterial peptidyl-tRNA hydrolases, with most residues in the active site conserved amongst the family. The resultant reagents, structural data and analyses provide essential information for the structure-based design of novel inhibitors for this class of proteins.


Assuntos
Hidrolases de Éster Carboxílico/química , Francisella tularensis/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Estrutura Terciária de Proteína
6.
Clin Pharmacol Drug Dev ; 10(8): 940-949, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33440067

RESUMO

PTC596 is a novel, orally bioavailable, small-molecule tubulin-binding agent that reduces B-cell-specific Moloney murine leukemia virus insertion site 1 activity and is being developed for the treatment of solid tumors. A phase 1, open-label, multiple-ascending-dose study was conducted to evaluate the pharmacokinetics and safety of the drug in subjects with advanced solid tumors. PTC596 was administered orally biweekly based on body weight. Dose escalation followed a modified 3 + 3 scheme using doses of 0.65, 1.3, 2.6, 5.2, 7.0, and 10.4 mg/kg. Following oral administration, PTC596 was rapidly absorbed, and between 0.65 and 7.0 mg/kg reached a maximum plasma concentration 2 to 4 hours after dosing. Area under the plasma concentration-time curve increased proportionally with body weight-adjusted doses. Maximum plasma concentration increased with dose, although the increase was less than dose proportional at dose levels >2.6 mg/kg. No accumulation occurred after multiple administrations up to 7.0 mg/kg. PTC596 had a terminal half-life ranging 12 to 15 hours at all doses except for the highest dose of 10.4 mg/kg, where the half-life was approximately 20 hours. Overall, PTC596 was well tolerated. The most frequently reported PTC596-related treatment-emergent adverse events were mild to moderate gastrointestinal symptoms, including diarrhea (54.8%), nausea (45.2%), vomiting (35.5%), and fatigue (35.5%). Only 1 patient treated with 10.4 mg/kg experienced dose-limiting toxicity of neutropenia and thrombocytopenia, both of which were reversible. Stable disease as best overall response was observed among 7 patients, with 2 patients receiving the study drug up to 16 weeks. These results support the further development of PTC596 for the treatment of solid tumors.


Assuntos
Benzimidazóis/administração & dosagem , Neoplasias/tratamento farmacológico , Pirazinas/administração & dosagem , Administração Oral , Adulto , Idoso , Idoso de 80 Anos ou mais , Benzimidazóis/efeitos adversos , Benzimidazóis/farmacocinética , Esquema de Medicação , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Pirazinas/efeitos adversos , Pirazinas/farmacocinética , Resultado do Tratamento
7.
Mol Cancer Ther ; 20(10): 1846-1857, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34315764

RESUMO

PTC596 is an investigational small-molecule tubulin-binding agent. Unlike other tubulin-binding agents, PTC596 is orally bioavailable and is not a P-glycoprotein substrate. So as to characterize PTC596 to position the molecule for optimal clinical development, the interactions of PTC596 with tubulin using crystallography, its spectrum of preclinical in vitro anticancer activity, and its pharmacokinetic-pharmacodynamic relationship were investigated for efficacy in multiple preclinical mouse models of leiomyosarcomas and glioblastoma. Using X-ray crystallography, it was determined that PTC596 binds to the colchicine site of tubulin with unique key interactions. PTC596 exhibited broad-spectrum anticancer activity. PTC596 showed efficacy as monotherapy and additive or synergistic efficacy in combinations in mouse models of leiomyosarcomas and glioblastoma. PTC596 demonstrated efficacy in an orthotopic model of glioblastoma under conditions where temozolomide was inactive. In a first-in-human phase I clinical trial in patients with cancer, PTC596 monotherapy drug exposures were compared with those predicted to be efficacious based on mouse models. PTC596 is currently being tested in combination with dacarbazine in a clinical trial in adults with leiomyosarcoma and in combination with radiation in a clinical trial in children with diffuse intrinsic pontine glioma.


Assuntos
Benzimidazóis/farmacologia , Glioblastoma/tratamento farmacológico , Leiomiossarcoma/tratamento farmacológico , Pirazinas/farmacologia , Moduladores de Tubulina/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Benzimidazóis/farmacocinética , Proliferação de Células , Feminino , Glioblastoma/patologia , Humanos , Leiomiossarcoma/patologia , Masculino , Dose Máxima Tolerável , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Pirazinas/farmacocinética , Distribuição Tecidual , Moduladores de Tubulina/farmacocinética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Carbohydr Res ; 495: 108058, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32658832

RESUMO

G418 is currently the most potent and active aminoglycoside to promote readthrough of eukaryotic nonsense mutations. However, owing to its toxicity G418 cannot be used in vivo to study readthrough activity A robust and scalable method for selective derivatization of G418 was developed to study the biological activity and toxicity of a series of analogs. Despite our synthetic efforts, an improvement in readthrough potency was not achieved. We discovered several analogs that demonstrated reduced zebra fish hair cell toxicity (a surrogate for ototoxicity), but this reduction in cellular toxicity did not translate to reduced in vivo toxicity in rats.


Assuntos
Aminoglicosídeos/farmacologia , Gentamicinas/farmacologia , Cabelo/efeitos dos fármacos , Aminoglicosídeos/síntese química , Aminoglicosídeos/química , Animais , Gentamicinas/química , Conformação Molecular , Ratos , Peixe-Zebra
9.
Clin Cancer Res ; 25(18): 5548-5560, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31175095

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDA) is a deadly cancer that is broadly chemoresistant, due in part to biophysical properties of tumor stroma, which serves as a barrier to drug delivery for most classical chemotherapeutic drugs. The goal of this work is to evaluate the preclinical efficacy and mechanisms of PTC596, a novel agent with potent anticancer properties in vitro and desirable pharmacologic properties in vivo.Experimental Design: We assessed the pharmacology, mechanism, and preclinical efficacy of PTC596 in combination with standards of care, using multiple preclinical models of PDA. RESULTS: We found that PTC596 has pharmacologic properties that overcome the barrier to drug delivery in PDA, including a long circulating half-life, lack of P-glycoprotein substrate activity, and high systemic tolerability. We also found that PTC596 combined synergistically with standard clinical regimens to improve efficacy in multiple model systems, including the chemoresistant genetically engineered "KPC" model of PDA. Through mechanistic studies, we learned that PTC596 functions as a direct microtubule polymerization inhibitor, yet a prior clinical trial found that it lacks peripheral neurotoxicity, in contrast to other such agents. Strikingly, we found that PTC596 synergized with the standard clinical backbone regimen gemcitabine/nab-paclitaxel, yielding potent, durable regressions in a PDX model. Moreover, similar efficacy was achieved in combination with nab-paclitaxel alone, highlighting a specific synergistic interaction between two different microtubule-targeted agents in the setting of pancreatic ductal adenocarcinoma. CONCLUSIONS: These data demonstrate clear rationale for the development of PTC596 in combination with standard-of-care chemotherapy for PDA.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/metabolismo , Microtúbulos/metabolismo , Neoplasias Pancreáticas/metabolismo , Multimerização Proteica/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Albuminas/farmacologia , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/mortalidade , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Imuno-Histoquímica , Camundongos , Microtúbulos/química , Paclitaxel/farmacologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/mortalidade , Moduladores de Tubulina/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
10.
Oncotarget ; 9(47): 28547-28560, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29983879

RESUMO

Despite the development of the novel Bruton tyrosine kinase inhibitor ibrutinib, mantle cell lymphoma (MCL) remains an incurable B-cell non-Hodgkin lymphoma. BMI-1 is required for the self-renewal and maintenance of MCL-initiating stem cells. Upregulation of BMI-1 has been reported in MCL patients, especially in those with refractory/relapsed disease. We studied the effects of a novel small-molecule selective inhibitor of BMI1 expression, PTC596, in MCL cells. Eight MCL cell lines and patient-derived samples were exposed to PTC596. PTC596 induced mitochondrial apoptosis, as evidenced by loss of mitochondrial membrane potential, caspase-3 cleavage, BAX activation, and phosphatidylserine externalization. There was a positive correlation between baseline BMI-1 protein levels and PTC596-induced apoptosis. p53 status did not affect sensitivity to PTC596. PTC596 effectively decreased BMI-1-expressing and tumor-initiating side population MCL cells (IC50: 138 nM) compared with ibrutinib, which modestly decreased side population cells. Interestingly, PTC596, reported to target cancer stem cells, decreased MCL-1 expression levels and antagonized ibrutinib-induced increase in MCL-1 expression, leading to synergistic apoptosis induction in MCL cells. There are currently no drugs that specifically target cancer stem cell fractions, and a reduction in BMI-1 protein by PTC596 may offer a novel therapeutic strategy for MCL.

11.
Mol Cancer Ther ; 17(10): 2136-2143, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30026381

RESUMO

With rising incidence rates, endometrial cancer is one of the most common gynecologic malignancies in the United States. Although surgery provides significant survival benefit to early-stage patients, those with advanced or recurrent metastatic disease have a dismal prognosis. Limited treatment options include chemotherapy and radiotherapy. Hence, there is a compelling need for developing molecularly targeted therapy. Here, we show that the polycomb ring finger protein BMI1, also known as a stem cell factor, is significantly overexpressed in endometrial cancer cell lines, endometrial cancer patient tissues as well as in nonendometrioid histologies and associated with poor overall survival. PTC-028, a second-generation inhibitor of BMI1 function, decreases invasion of endometrial cancer cells and potentiates caspase-dependent apoptosis, while normal cells with minimal expression of BMI1 remain unaffected. In an aggressive uterine carcinosarcoma xenograft model, single-agent PTC-028 significantly delayed tumor growth and increased tumor doubling time compared with the standard carboplatin/paclitaxel therapy. Therefore, anti-BMI1 strategies may represent a promising targeted approach in patients with advanced or recurrent endometrial cancer, a population where treatment options are limited. Mol Cancer Ther; 17(10); 2136-43. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Endométrio/metabolismo , Complexo Repressor Polycomb 1/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/mortalidade , Neoplasias do Endométrio/patologia , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Med Chem ; 61(10): 4456-4475, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29727185

RESUMO

There exists an urgent medical need to identify new chemical entities (NCEs) targeting multidrug resistant (MDR) bacterial infections, particularly those caused by Gram-negative pathogens. 4-Hydroxy-2-pyridones represent a novel class of nonfluoroquinolone inhibitors of bacterial type II topoisomerases active against MDR Gram-negative bacteria. Herein, we report on the discovery and structure-activity relationships of a series of fused indolyl-containing 4-hydroxy-2-pyridones with improved in vitro antibacterial activity against fluoroquinolone resistant strains. Compounds 6o and 6v are representative of this class, targeting both bacterial DNA gyrase and topoisomerase IV (Topo IV). In an abbreviated susceptibility screen, compounds 6o and 6v showed improved MIC90 values against Escherichia coli (0.5-1 µg/mL) and Acinetobacter baumannii (8-16 µg/mL) compared to the precursor compounds. In a murine septicemia model, both compounds showed complete protection in mice infected with a lethal dose of E. coli.


Assuntos
Antibacterianos/farmacologia , DNA Topoisomerases Tipo II/química , Descoberta de Drogas , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Sepse/tratamento farmacológico , Inibidores da Topoisomerase II/farmacologia , Animais , Antibacterianos/química , Feminino , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Piridinas/química , Sepse/microbiologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/química
13.
Acta Crystallogr D Struct Biol ; 72(Pt 4): 488-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27050128

RESUMO

Klebsiella pneumoniae is a Gram-negative bacterium that is responsible for a range of common infections, including pulmonary pneumonia, bloodstream infections and meningitis. Certain strains of Klebsiella have become highly resistant to antibiotics. Despite the vast amount of research carried out on this class of bacteria, the molecular structure of its topoisomerase IV, a type II topoisomerase essential for catalysing chromosomal segregation, had remained unknown. In this paper, the structure of its DNA-cleavage complex is reported at 3.35 Å resolution. The complex is comprised of ParC breakage-reunion and ParE TOPRIM domains of K. pneumoniae topoisomerase IV with DNA stabilized by levofloxacin, a broad-spectrum fluoroquinolone antimicrobial agent. This complex is compared with a similar complex from Streptococcus pneumoniae, which has recently been solved.


Assuntos
Proteínas de Bactérias/química , DNA Topoisomerase IV/química , Klebsiella pneumoniae/enzimologia , Quinolonas/química , Streptococcus pneumoniae/enzimologia , DNA Bacteriano/química
14.
J Med Chem ; 45(6): 1340-7, 2002 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-11882003

RESUMO

Des-(N-methyl-D-leucyl)eremomycin was obtained by Edman degradation of eremomycin. Derivatives with a hydrophobic substituent at the exterior of the molecule were then synthesized, and their antibacterial activities were compared with similar derivatives of eremomycin. Comparison of derivatives of eremomycin containing the n-decyl or p-(p-chlorophenyl)benzyl substituent in the eremosamine moiety (N') and n-decyl or p-(p-chlorophenyl)benzylamides with similar derivatives of eremomycin possessing the damaged peptide core (a defective binding pocket) showed that compounds of both types are almost equally active against glycopeptide-resistant strains of enterococci (GRE), whereas eremomycin derivatives are more active against staphylococci. Hydrophobic 7d-alkylaminomethylated derivatives of eremomycin (9, 10) demonstrated similar antibacterial properties. Since the basic mode of action of glycopeptide antibiotics involves binding to cell wall intermediates terminating in -D-Ala-D-Ala and this interaction is seriously decreased in the hexapeptide derivatives (lacking the critical N-methyl-D-leucine), we suggest that these hydrophobic derivatives may inhibit peptidoglycan synthesis in the absence of dipeptide binding. NMR binding experiments using Ac-D-Ala-D-Ala show that binding constants of these hexapeptide derivativies are decreased in comparison with the corresponding heptapeptides with intact binding pocket. This is in agreement with the decreased biological activity of the hexapeptide derivatives against vancomycin-sensitive strains in comparison with the activity of parent compounds. Binding to the lactate cell wall analogue Ac-D-Ala-D-Lac with decylamide of eremomycin 8 was not observed, demonstrating that the interaction with this target in GRE does not occur. While hydrophobic glycopeptide derivatives retain the ability to inhibit the synthesis of peptidoglycan in manner of natural glycopeptides, biochemical investigation supports the hypothesis that they inhibit the transglycosylase stage of bacterial peptidoglycan biosynthesis even in the absence of dipeptide or depsipeptide binding.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Glicopeptídeos/síntese química , Glicopeptídeos/farmacologia , Antibacterianos/química , Enterococcus/efeitos dos fármacos , Humanos , Ligantes , Testes de Sensibilidade Microbiana , Ressonância Magnética Nuclear Biomolecular , Peptidoglicano/biossíntese , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
15.
Lancet Respir Med ; 2(7): 539-47, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24836205

RESUMO

BACKGROUND: Ataluren was developed to restore functional protein production in genetic disorders caused by nonsense mutations, which are the cause of cystic fibrosis in 10% of patients. This trial was designed to assess the efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis. METHODS: This randomised, double-blind, placebo-controlled, phase 3 study enrolled patients from 36 sites in 11 countries in North America and Europe. Eligible patients with nonsense-mutation cystic fibrosis (aged ≥ 6 years; abnormal nasal potential difference; sweat chloride >40 mmol/L; forced expiratory volume in 1 s [FEV1] ≥ 40% and ≤ 90%) were randomly assigned by interactive response technology to receive oral ataluren (10 mg/kg in morning, 10 mg/kg midday, and 20 mg/kg in evening) or matching placebo for 48 weeks. Randomisation used a block size of four, stratified by age, chronic inhaled antibiotic use, and percent-predicted FEV1. The primary endpoint was relative change in percent-predicted FEV1 from baseline to week 48, analysed in all patients with a post-baseline spirometry measurement. This study is registered with ClinicalTrials.gov, number NCT00803205. FINDINGS: Between Sept 8, 2009, and Nov 30, 2010, 238 patients were randomly assigned, of whom 116 in each treatment group had a valid post-baseline spirometry measurement. Relative change from baseline in percent-predicted FEV1 did not differ significantly between ataluren and placebo at week 48 (-2.5% vs -5.5%; difference 3.0% [95% CI -0.8 to 6.3]; p=0.12). The number of pulmonary exacerbations did not differ significantly between treatment groups (rate ratio 0.77 [95% CI 0.57-1.05]; p=0.0992). However, post-hoc analysis of the subgroup of patients not using chronic inhaled tobramycin showed a 5.7% difference (95% CI 1.5-10.1) in relative change from baseline in percent-predicted FEV1 between the ataluren and placebo groups at week 48 (-0.7% [-4.0 to 2.1] vs -6.4% [-9.8 to -3.7]; nominal p=0.0082), and fewer pulmonary exacerbations in the ataluern group (1.42 events [0.9-1.9] vs 2.18 events [1.6-2.7]; rate ratio 0.60 [0.42-0.86]; nominal p=0.0061). Safety profiles were generally similar for ataluren and placebo, except for the occurrence of increased creatinine concentrations (ie, acute kidney injury), which occurred in 18 (15%) of 118 patients in the ataluren group compared with one (<1%) of 120 patients in the placebo group. No life-threatening adverse events or deaths were reported in either group. INTERPRETATION: Although ataluren did not improve lung function in the overall population of nonsense-mutation cystic fibrosis patients who received this treatment, it might be beneficial for patients not taking chronic inhaled tobramycin. FUNDING: PTC Therapeutics, Cystic Fibrosis Foundation, US Food and Drug Administration's Office of Orphan Products Development, and the National Institutes of Health.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Oxidiazóis/uso terapêutico , Injúria Renal Aguda/induzido quimicamente , Adolescente , Adulto , Antibacterianos/administração & dosagem , Criança , Cloretos/análise , Códon sem Sentido , Fibrose Cística/fisiopatologia , Progressão da Doença , Método Duplo-Cego , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Oxidiazóis/efeitos adversos , Suor/química , Tobramicina/administração & dosagem , Adulto Jovem
17.
Microbiology (Reading) ; 146 Pt 12: 3129-3140, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11101671

RESUMO

Moenomycin is a natural product glycolipid that inhibits the growth of a broad spectrum of Gram-positive bacteria. In Escherichia coli, moenomycin inhibits peptidoglycan synthesis at the transglycosylation stage, causes accumulation of cell-wall intermediates, and leads to lysis and cell death. However, unlike Esc. coli, where 5-6 log units of killing are observed, 0-2 log units of killing occurred when Gram-positive bacteria were treated with similar multiples of the MIC. In addition, bulk peptidoglycan synthesis in intact Gram-positive cells was resistant to the effects of moenomycin. In contrast, synthetic disaccharides based on the moenomycin disaccharide core structure were identified that were bactericidal to Gram-positive bacteria, inhibited cell-wall synthesis in intact cells, and were active on both sensitive and vancomycin-resistant enterococci. These disaccharide analogues do not inhibit the formation of N:-acetylglucosamine-ss-1, 4-MurNAc-pentapeptide-pyrophosphoryl-undecaprenol (lipid II), but do inhibit the polymerization of lipid II into peptidoglycan in Esc. coli. In addition, cell growth was required for bactericidal activity. The data indicate that synthetic disaccharide analogues of moenomycin inhibit cell-wall synthesis at the transglycosylation stage, and that their activity on Gram-positive bacteria differs from moenomycin due to differential targeting of the transglycosylation process. Inhibition of the transglycosylation process represents a promising approach to the design of new antibacterial agents active on drug-resistant bacteria.


Assuntos
Bambermicinas/farmacologia , Dissacarídeos/química , Dissacarídeos/farmacologia , Escherichia coli/efeitos dos fármacos , Glicosiltransferases/antagonistas & inibidores , Bactérias Gram-Positivas/efeitos dos fármacos , Peptidoglicano/biossíntese , Antibacterianos/química , Antibacterianos/farmacologia , Bambermicinas/química , Linhagem Celular , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Dissacarídeos/síntese química , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA