RESUMO
Lactosylceramide [LacCer; ß-Gal-(1-4)-ß-Glc-(1-1)-Cer] has been shown to contain very long fatty acids that specifically modulate neutrophil properties. The interactions between LacCer and proteins and their role in cell signaling processes were assessed by synthesizing two molecular species of azide-photoactivable tritium-labeled LacCer having acyl chains of different lengths. The lengths of the two acyl chains corresponded to those of a short/medium and very long fatty acid, comparable to the lengths of stearic and lignoceric acids, respectively. These derivatives, designated C18-[(3)H]LacCer-(N3) and C24-[(3)H]LacCer-(N3), were incorporated into the lipid rafts of plasma membranes of neutrophilic differentiated HL-60 (D-HL-60) cells. C24-[(3)H]LacCer-(N3), but not C18-[(3)H]LacCer-(N3), induced the phosphorylation of Lyn and promoted phagocytosis. Incorporation of C24-[(3)H]LacCer-(N3) into plasma membranes, followed by illumination, resulted in the formation of several tritium-labeled LacCer-protein complexes, including the LacCer-Lyn complex, into plasma membrane lipid rafts. Administration of C18-[(3)H]LacCer-(N3) to cells, however, did not result in the formation of the LacCer-Lyn complex. These results suggest that LacCer derivatives mimic the biological properties of natural LacCer species and can be utilized as tools to study LacCer-protein interactions, and confirm a specific direct interaction between LacCer species containing very long fatty acids, and Lyn protein, associated with the cytoplasmic layer via myristic/palmitic chains.
Assuntos
Antígenos CD/metabolismo , Lactosilceramidas/metabolismo , Microdomínios da Membrana/metabolismo , Neutrófilos/citologia , Transdução de Sinais , Quinases da Família src/metabolismo , Animais , Antígenos CD/química , Antígenos CD/farmacologia , Azidas/química , Sobrevivência Celular/efeitos dos fármacos , Células HL-60 , Humanos , Lactosilceramidas/química , Lactosilceramidas/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Neutrófilos/imunologia , Fagocitose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ligação Proteica , Transdução de Sinais/efeitos dos fármacosRESUMO
An efficient method for the synthesis of long-chain α,ω-diamino acids, starting from natural α-amino acids, has been developed. The long-chain skeleton has been generated through condensation between a protected aldehyde, derived from L-aspartic acid, and an ylide obtained from an ω-hydroxy-alkyl phosphonium salt. After conversion of the ω-hydroxy group into an amine, catalytic hydrogenation produced the N,N'-protected α,ω-diamino acid. The present route to α,ω-diamino acids allows the modulation of the chain length depending on the length of the ylide used for the Wittig olefination reaction.