Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 117: 330-346, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309640

RESUMO

Nutrient composition in obesogenic diets may influence the severity of disorders associated with obesity such as insulin-resistance and chronic inflammation. Here we hypothesized that obesogenic diets rich in fat and varying in fatty acid composition, particularly in omega 6 (ω6) to omega 3 (ω3) ratio, have various effects on energy metabolism, neuroinflammation and behavior. Mice were fed either a control diet or a high fat diet (HFD) containing either low (LO), medium (ME) or high (HI) ω6/ω3 ratio. Mice from the HFD-LO group consumed less calories and exhibited less body weight gain compared to other HFD groups. Both HFD-ME and HFD-HI impaired glucose metabolism while HFD-LO partly prevented insulin intolerance and was associated with normal leptin levels despite higher subcutaneous and perigonadal adiposity. Only HFD-HI increased anxiety and impaired spatial memory, together with increased inflammation in the hypothalamus and hippocampus. Our results show that impaired glucose metabolism and neuroinflammation are uncoupled, and support that diets with a high ω6/ω3 ratio are associated with neuroinflammation and the behavioral deterioration coupled with the consumption of diets rich in fat.


Assuntos
Insulinas , Doenças Neuroinflamatórias , Animais , Camundongos , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Inflamação , Glucose
2.
PLoS Comput Biol ; 19(4): e1010993, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068087

RESUMO

Dorsal horn of the spinal cord is an important crossroad of pain neuraxis, especially for the neuronal plasticity mechanisms that can lead to chronic pain states. Windup is a well-known spinal pain facilitation process initially described several decades ago, but its exact mechanism is still not fully understood. Here, we combine both ex vivo and in vivo electrophysiological recordings of rat spinal neurons with computational modeling to demonstrate a role for ASIC1a-containing channels in the windup process. Spinal application of the ASIC1a inhibitory venom peptides mambalgin-1 and psalmotoxin-1 (PcTx1) significantly reduces the ability of deep wide dynamic range (WDR) neurons to develop windup in vivo. All deep WDR-like neurons recorded from spinal slices exhibit an ASIC current with biophysical and pharmacological characteristics consistent with functional expression of ASIC1a homomeric channels. A computational model of WDR neuron supplemented with different ASIC1a channel parameters accurately reproduces the experimental data, further supporting a positive contribution of these channels to windup. It also predicts a calcium-dependent windup decrease for elevated ASIC conductances, a phenomenon that was experimentally validated using the Texas coral snake ASIC-activating toxin (MitTx) and calcium-activated potassium channel inhibitory peptides (apamin and iberiotoxin). This study supports a dual contribution to windup of calcium permeable ASIC1a channels in deep laminae projecting neurons, promoting it upon moderate channel activity, but ultimately leading to calcium-dependent windup inhibition associated to potassium channels when activity increases.


Assuntos
Cálcio , Dor , Animais , Ratos , Cálcio/metabolismo , Simulação por Computador , Neurônios/fisiologia , Peptídeos , Apamina/metabolismo
3.
J Biol Chem ; 298(5): 101780, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35231443

RESUMO

Membrane contact sites are specialized areas where the membranes of two distinct organelles are physically connected and allow for the exchange of molecules and for signaling processes. Understanding the mechanisms whereby proteins localize to and function in these structures is of special interest; however, methods allowing for reconstitution of these contact sites are few and only based on synthetic membranes and recombinant proteins. Here, we devised a strategy to create in situ artificial contact sites between synthetic and endogenous organelle membranes. Liposomes functionalized with a peptide containing a two phenylalanines in an acidic tract (FFAT) motif were added to adherent cells whose plasma membrane was perforated. Confocal and super-resolution microscopy revealed that these liposomes associated with the endoplasmic reticulum via the specific interaction of the FFAT motif with endoplasmic reticulum-resident vesicle-associated membrane protein-associated proteins. This approach allowed for quantification of the attachment properties of peptides corresponding to FFAT motifs derived from distinct proteins and of a protein construct derived from steroidogenic acute regulatory protein-related lipid transfer domain-3. Collectively, these data indicate that the creation of in situ artificial contact sites represents an efficient approach for studying the membrane-tethering activity of proteins and for designing membrane contact site reconstitution assays in cellular contexts.


Assuntos
Retículo Endoplasmático , Lipossomos , Membranas Artificiais , Motivos de Aminoácidos , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Lipossomos/química , Lipossomos/metabolismo , Lipossomos/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Recombinantes , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
J Cell Sci ; 134(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483367

RESUMO

Ciliogenesis is a coordinated process initiated by the recruitment and fusion of pre-ciliary vesicles at the distal appendages of the mother centriole through mechanisms that remain unclear. Here, we report that EFA6A (also known as PSD), an exchange factor for the small G protein Arf6, is involved in early stage of ciliogenesis by promoting the fusion of distal appendage vesicles forming the ciliary vesicle. EFA6A is present in the vicinity of the mother centriole before primary cilium assembly and prior to the arrival of Arl13B-containing vesicles. During ciliogenesis, EFA6A initially accumulates at the mother centriole and later colocalizes with Arl13B along the ciliary membrane. EFA6A depletion leads to the inhibition of ciliogenesis, the absence of centrosomal Rab8-positive structures and the accumulation of Arl13B-positive vesicles around the distal appendages. Our results uncover a novel fusion machinery, comprising EFA6A, Arf6 and Arl13B, that controls the coordinated fusion of ciliary vesicles docked at the distal appendages of the mother centriole.


Assuntos
Fatores de Ribosilação do ADP , Centríolos , Cílios , Fatores de Troca do Nucleotídeo Guanina , Animais , Linhagem Celular , Vesículas Citoplasmáticas
5.
Genome Res ; 30(11): 1633-1642, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32973039

RESUMO

To gain better insight into the dynamic interaction between cells and their environment, we developed the agonist-induced functional analysis and cell sorting (aiFACS) technique, which allows the simultaneous recording and sorting of cells in real-time according to their immediate and individual response to a stimulus. By modulating the aiFACS selection parameters, testing different developmental times, using various stimuli, and multiplying the analysis of readouts, it is possible to analyze cell populations of any normal or pathological tissue. The association of aiFACS with single-cell transcriptomics allows the construction of functional tissue cartography based on specific pharmacological responses of cells. As a proof of concept, we used aiFACS on the dissociated mouse brain, a highly heterogeneous tissue, enriching it in interneurons by stimulation with KCl or with AMPA, an agonist of the glutamate receptors, followed by sorting based on calcium levels. After AMPA stimulus, single-cell transcriptomics of these aiFACS-selected interneurons resulted in a nine-cluster classification. Furthermore, we used aiFACS on interneurons derived from the brain of the Fmr1-KO mouse, a rodent model of fragile X syndrome. We showed that these interneurons manifest a generalized defective response to AMPA compared with wild-type cells, affecting all the analyzed cell clusters at one specific postnatal developmental time.


Assuntos
Encéfalo/metabolismo , Separação Celular/métodos , Citometria de Fluxo/métodos , Interneurônios/metabolismo , RNA-Seq , Análise de Célula Única , Encéfalo/citologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Técnicas de Inativação de Genes , Interneurônios/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
6.
Cell Mol Life Sci ; 79(7): 378, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739402

RESUMO

SUMOylation is a post-translational modification essential to cell homeostasis. A tightly controlled equilibrium between SUMOylation and deSUMOylation processes is also critical to the neuronal function including neurotransmitter release and synaptic transmission and plasticity. Disruption of the SUMOylation homeostasis in neurons is associated with several neurological disorders. The balance between the SUMOylation and deSUMOylation of substrate proteins is maintained by a group of deSUMOylation enzymes called SENPs. We previously showed that the activation of type 5 metabotropic glutamate receptors (mGlu5R) first triggers a rapid increase in synaptic SUMOylation and then upon the sustained activation of these receptors, the deSUMOylase activity of SENP1 allows the increased synaptic SUMOylation to get back to basal levels. Here, we combined the use of pharmacological tools with subcellular fractionation and live-cell imaging of individual hippocampal dendritic spines to demonstrate that the synaptic accumulation of the deSUMOylation enzyme SENP1 is bidirectionally controlled by the activation of type 1 mGlu1 and mGlu5 receptors. Indeed, the pharmacological blockade of mGlu1R activation during type 1 mGluR stimulation leads to a faster and greater accumulation of SENP1 at synapses indicating that mGlu1R acts as a brake to the mGlu5R-dependent deSUMOylation process at the post-synapse. Altogether, our findings reveal that type 1 mGluRs work in opposition to dynamically tune the homeostasis of SUMOylation at the mammalian synapse.


Assuntos
Receptores de Glutamato Metabotrópico , Sumoilação , Animais , Hipocampo/metabolismo , Mamíferos/metabolismo , Neurônios/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo
7.
Glia ; 69(1): 42-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32659044

RESUMO

In humans, obesity is associated with brain inflammation, glial reactivity, and immune cells infiltration. Studies in rodents have shown that glial reactivity occurs within 24 hr of high-fat diet (HFD) consumption, long before obesity development, and takes place mainly in the hypothalamus (HT), a crucial brain structure for controlling body weight. Here, we sought to characterize the postprandial HT inflammatory response to 1, 3, and 6 hr of exposure to either a standard diet (SD) or HFD. HFD exposure increased gene expression of astrocyte and microglial markers (glial fibrillary acidic protein [GFAP] and Iba1, respectively) compared to SD-treated mice and induced morphological modifications of microglial cells in HT. This remodeling was associated with higher expression of inflammatory genes and differential regulation of hypothalamic neuropeptides involved in energy balance regulation. DREADD and PLX5622 technologies, used to modulate GFAP-positive or microglial cells activity, respectively, showed that both glial cell types are involved in hypothalamic postprandial inflammation, with their own specific kinetics and reactiveness to ingested foods. Thus, recurrent exacerbated postprandial inflammation in the brain might promote obesity and needs to be characterized to address this worldwide crisis.


Assuntos
Gorduras na Dieta , Microglia , Animais , Dieta Hiperlipídica/efeitos adversos , Proteína Glial Fibrilar Ácida , Hipotálamo , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade
8.
Am J Respir Crit Care Med ; 202(12): 1636-1645, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32726565

RESUMO

Rationale: The respiratory tract constitutes an elaborate line of defense that is based on a unique cellular ecosystem.Objectives: We aimed to investigate cell population distributions and transcriptional changes along the airways by using single-cell RNA profiling.Methods: We have explored the cellular heterogeneity of the human airway epithelium in 10 healthy living volunteers by single-cell RNA profiling. A total of 77,969 cells were collected at 35 distinct locations, from the nose to the 12th division of the airway tree.Measurements and Main Results: The resulting atlas is composed of a high percentage of epithelial cells (89.1%) but also immune (6.2%) and stromal (4.7%) cells with distinct cellular proportions in different regions of the airways. It reveals differential gene expression between identical cell types (suprabasal, secretory, and multiciliated cells) from the nose (MUC4, PI3, SIX3) and tracheobronchial (SCGB1A1, TFF3) airways. By contrast, cell-type-specific gene expression is stable across all tracheobronchial samples. Our atlas improves the description of ionocytes, pulmonary neuroendocrine cells, and brush cells and identifies a related population of NREP-positive cells. We also report the association of KRT13 with dividing cells that are reminiscent of previously described mouse "hillock" cells and with squamous cells expressing SCEL and SPRR1A/B.Conclusions: Robust characterization of a single-cell cohort in healthy airways establishes a valuable resource for future investigations. The precise description of the continuum existing from the nasal epithelium to successive divisions of the airways and the stable gene expression profile of these regions better defines conditions under which relevant tracheobronchial proxies of human respiratory diseases can be developed.


Assuntos
Brônquios/citologia , Brônquios/crescimento & desenvolvimento , Diferenciação Celular/genética , Proliferação de Células/genética , Células Epiteliais/citologia , Mucosa Nasal/citologia , Mucosa Nasal/crescimento & desenvolvimento , Células Estromais/citologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação da Expressão Gênica , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade
9.
Cell Mol Life Sci ; 76(15): 3019-3031, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30904951

RESUMO

Sumoylation is a reversible post-translational modification essential to the modulation of neuronal function, including neurotransmitter release and synaptic plasticity. A tightly regulated equilibrium between the sumoylation and desumoylation processes is critical to the brain function and its disruption has been associated with several neurological disorders. This sumoylation/desumoylation balance is governed by the activity of the sole SUMO-conjugating enzyme Ubc9 and a group of desumoylases called SENPs, respectively. We previously demonstrated that the activation of type 5 metabotropic glutamate receptors (mGlu5R) triggers the transient trapping of Ubc9 in dendritic spines, leading to a rapid increase in the overall synaptic sumoylation. However, the mechanisms balancing this increased synaptic sumoylation are still not known. Here, we examined the diffusion properties of the SENP1 enzyme using a combination of advanced biochemical approaches and restricted photobleaching/photoconversion of individual hippocampal spines. We demonstrated that the activation of mGlu5R leads to a time-dependent decrease in the exit rate of SENP1 from dendritic spines. The resulting post-synaptic accumulation of SENP1 restores synaptic sumoylation to initial levels. Altogether, our findings reveal the mGlu5R system as a central activity-dependent mechanism to maintaining the homeostasis of sumoylation at the mammalian synapse.


Assuntos
Receptor de Glutamato Metabotrópico 5/metabolismo , Sinapses/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Cisteína Endopeptidases/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Humanos , Microscopia de Fluorescência , Neurônios/citologia , Neurônios/metabolismo , Ratos Wistar , Proteína SUMO-1/metabolismo , Sumoilação , Enzimas de Conjugação de Ubiquitina/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(15): 4200-5, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035965

RESUMO

The tandem of pore domain in a weak inwardly rectifying K(+) channel (Twik)-related acid-arachidonic activated K(+) channel (TRAAK) and Twik-related K(+) channels (TREK) 1 and TREK2 are active as homodimers gated by stretch, fatty acids, pH, and G protein-coupled receptors. These two-pore domain potassium (K2P) channels are broadly expressed in the nervous system where they control excitability. TREK/TRAAK KO mice display altered phenotypes related to nociception, neuroprotection afforded by polyunsaturated fatty acids, learning and memory, mood control, and sensitivity to general anesthetics. These channels have emerged as promising targets for the development of new classes of anesthetics, analgesics, antidepressants, neuroprotective agents, and drugs against addiction. Here, we show that the TREK1, TREK2, and TRAAK subunits assemble and form active heterodimeric channels with electrophysiological, regulatory, and pharmacological properties different from those of homodimeric channels. Heteromerization occurs between all TREK variants produced by alternative splicing and alternative translation initiation. These results unveil a previously unexpected diversity of K2P channels that will be challenging to analyze in vivo, but which opens new perspectives for the development of clinically relevant drugs.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/química , Animais , Dimerização , Cães , Humanos , Células Madin Darby de Rim Canino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA