Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Atmos Environ (1994) ; 254: 118386, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33841025

RESUMO

One of the multi-facet impacts of lockdowns during the unprecedented COVID-19 pandemic was restricted economic and transport activities. This has resulted in the reduction of air pollution concentrations observed globally. This study is aimed at examining the concentration changes in air pollutants (i.e., carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and particulate matters (PM2.5 and PM10) during the period March-April 2020. Data from both satellite observations (for NO2) and ground-based measurements (for all other pollutants) were utilized to analyze the changes when compared against the same months between 2015 and 2019. Globally, space borne NO2 column observations observed by satellite (OMI on Aura) were reduced by approximately 9.19% and 9.57%, in March and April 2020, respectively because of public health measures enforced to contain the coronavirus disease outbreak (COVID-19). On a regional scale and after accounting for the effects of meteorological variability, most monitoring sites in Europe, USA, China, and India showed declines in CO, NO2, SO2, PM2.5, and PM10 concentrations during the period of analysis. An increase in O3 concentrations occurred during the same period. Meanwhile, four major cities case studies i.e. in New York City (USA), Milan (Italy), Wuhan (China), and New Delhi (India) have also shown a similar reduction trends as observed on the regional scale, and an increase in ozone concentration. This study highlights that the reductions in air pollutant concentrations have overall improved global air quality likely driven in part by economic slowdowns resulting from the global pandemic.

2.
Atmos Environ (1994) ; 207: 93-104, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32461734

RESUMO

The United States (US) Environmental Protection Agency (EPA)'s SPECIATE database contains speciated particulate matter (PM) and volatile organic compound (VOC) emissions profiles. Emissions profiles from anthropogenic combustion, industry, wildfires, and agricultural sources among others are key inputs for creating chemically-resolved emissions inventories for air quality modeling. While the database and its use for air quality modeling are routinely updated and evaluated, this work sets out to systematically prioritize future improvements and communicate speciation data needs to the research community. We first identify the most prominent profiles (PM and VOC) used in the EPA's 2014 emissions modeling platform based on PM mass and VOC mass and reactivity. It is important to note that the on-road profiles were excluded from this analysis since speciation for these profiles is computed internally in the MOVES model. We then investigate these profiles further for quality and to determine whether they were being appropriately matched to source types while also considering regional variability of speciated pollutants. We then applied a quantitative needs assessment ranking system which rates the profile based on age, appropriateness (i.e. is the profile being used appropriately), prevalence in the EPA modeling platform and the quality of the reference. Our analysis shows that the highest ranked profiles (e.g. profile assignments with the highest priority for updates) include PM2.5 profiles for fires (prescribed, agricultural and wild) and VOC profiles for crude oil storage tanks and residential wood combustion of pine wood. Top ranked profiles may indicate either that there are problems with the currently available source testing or that current mappings of profiles to source categories within EPA's modeling platform need improvement. Through this process, we have identified 29 emissions sourcecategories that would benefit from updated mapping. Many of these mapping mismatches are due to lack of emissions testing for appropriate source categories. In addition, we conclude that new source emissions testing would be especially beneficial for residential wood combustion, nonroad gasoline exhaust and nonroad diesel equipment.

3.
J Air Waste Manag Assoc ; 71(1): 102-114, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33125305

RESUMO

Emissions of ammonia (NH3), oxides of nitrogen (NOx; NO +NO2), and nitrous oxide (N2O) from biomass burning were quantified on a global scale for 2001 to 2015. On average biomass burning emissions at a global scale over the period were as follows: 4.53 ± 0.51 Tg NH3 year-1, 14.65 ± 1.60 Tg NOx year-1, and 0.97 ± 0.11 Tg N2O year-1. Emissions were comparable to other emissions databases. Statistical regression models were developed to project NH3, NOx, and N2O emissions from biomass burning as a function of burn area. Two future climate scenarios (RCP 4.5 and RCP 8.5) were analyzed for 2050-2055 ("mid-century") and 2090-2095 ("end of century"). Under the assumptions made in this study, the results indicate emissions of all species are projected to increase under both the RCP 4.5 and RCP 8.5 climate scenarios. Implications: This manuscript quantifies emissions of NH3, NOx, and N2O on a global scale from biomass burning from 2001-2015 then creates regression models to predict emissions based on climate change. Because reactive nitrogen emissions have such an important role in the global nitrogen cycle, changes in these emissions could lead to a number of health and environmental impacts.


Assuntos
Mudança Climática , Óxido Nitroso , Amônia , Biomassa , Nitrogênio
4.
Bull Am Meteorol Soc ; 0: 1-94, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34446943

RESUMO

Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area. Gaps in understanding the coupled chemical-meteorological interactions that drive high pollution events make identification of the most effective air-basin specific emission control strategies challenging. To address this, a September 2019 workshop occurred with the goal of planning a future research campaign to investigate air quality in Western U.S. basins. Approximately 120 people participated, representing 50 institutions and 5 countries. Workshop participants outlined the rationale and design for a comprehensive wintertime study that would couple atmospheric chemistry and boundary-layer and complex-terrain meteorology within western U.S. basins. Participants concluded the study should focus on two regions with contrasting aerosol chemistry: three populated valleys within Utah (Salt Lake, Utah, and Cache Valleys) and the San Joaquin Valley in California. This paper describes the scientific rationale for a campaign that will acquire chemical and meteorological datasets using airborne platforms with extensive range, coupled to surface-based measurements focusing on sampling within the near-surface boundary layer, and transport and mixing processes within this layer, with high vertical resolution at a number of representative sites. No prior wintertime basin-focused campaign has provided the breadth of observations necessary to characterize the meteorological-chemical linkages outlined here, nor to validate complex processes within coupled atmosphere-chemistry models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA