Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 17(11): 722-735, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27507209

RESUMO

The highly conserved Notch signalling pathway functions in many different developmental and homeostatic processes, which raises the question of how this pathway can achieve such diverse outcomes. With a direct route from the membrane to the nucleus, the Notch pathway has fewer opportunities for regulation than do many other signalling pathways, yet it generates exquisitely patterned structures, including sensory hair cells and branched arterial networks. More confusingly, its activity promotes tissue growth and cancers in some circumstances but cell death and tumour suppression in others. Many different regulatory mechanisms help to shape the activity of the Notch pathway, generating functional outputs that are appropriate for each context. These mechanisms include the receptor-ligand landscape, the tissue topology, the nuclear environment and the connectivity of the regulatory networks.


Assuntos
Receptores Notch/fisiologia , Transdução de Sinais , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Humanos , Morfogênese , Neovascularização Fisiológica
2.
Development ; 150(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37294169

RESUMO

Active Notch signalling is elicited through receptor-ligand interactions that result in release of the Notch intracellular domain (NICD), which translocates into the nucleus. NICD activates transcription at target genes, forming a complex with the DNA-binding transcription factor CSL [CBF1/Su(H)/LAG-1] and co-activator Mastermind. However, CSL lacks its own nuclear localisation sequence, and it remains unclear where the tripartite complex is formed. To probe the mechanisms involved, we designed an optogenetic approach to control NICD release (OptIC-Notch) and monitored the subsequent complex formation and target gene activation. Strikingly, we observed that, when uncleaved, OptIC-Notch sequestered CSL in the cytoplasm. Hypothesising that exposure of a juxta membrane ΦWΦP motif is key to sequestration, we masked this motif with a second light-sensitive domain (OptIC-Notch{ω}), which was sufficient to prevent CSL sequestration. Furthermore, NICD produced by light-induced cleavage of OptIC-Notch or OptIC-Notch{ω} chaperoned CSL into the nucleus and induced target gene expression, showing efficient light-controlled activation. Our results demonstrate that exposure of the ΦWΦP motif leads to CSL recruitment and suggest this can occur in the cytoplasm prior to nuclear entry.


Assuntos
Receptores Notch , Fatores de Transcrição , Receptores Notch/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Ativação Transcricional , Transdução de Sinais/fisiologia
3.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35005772

RESUMO

Aggressive neoplastic growth can be initiated by a limited number of genetic alterations, such as the well-established cooperation between loss of cell architecture and hyperactive signaling pathways. However, our understanding of how these different alterations interact and influence each other remains very incomplete. Using Drosophila paradigms of imaginal wing disc epithelial growth, we have monitored the changes in Notch pathway activity according to the polarity status of cells (scrib mutant). We show that the scrib mutation impacts the direct transcriptional output of the Notch pathway, without altering the global distribution of Su(H), the Notch-dedicated transcription factor. The Notch-dependent neoplasms require, however, the action of a group of transcription factors, similar to those previously identified for Ras/scrib neoplasm (namely AP-1, Stat92E, Ftz-F1 and basic leucine zipper factors), further suggesting the importance of this transcription factor network during neoplastic growth. Finally, our work highlights some Notch/scrib specificities, in particular the role of the PAR domain-containing basic leucine zipper transcription factor and Notch direct target Pdp1 for neoplastic growth.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Receptores Notch/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Carcinogênese , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Larva/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Neoplasias/metabolismo , Neoplasias/patologia , Interferência de RNA , Transdução de Sinais , Asas de Animais/metabolismo
4.
Development ; 148(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486648

RESUMO

The Notch pathway mediates cell-to-cell communication in a variety of tissues, developmental stages and organisms. Pathway activation relies on the interaction between transmembrane ligands and receptors on adjacent cells. As such, pathway activity could be influenced by the size, composition or dynamics of contacts between membranes. The initiation of Notch signalling in the Drosophila embryo occurs during cellularization, when lateral cell membranes and adherens junctions are first being deposited, allowing us to investigate the importance of membrane architecture and specific junctional domains for signalling. By measuring Notch-dependent transcription in live embryos, we established that it initiates while lateral membranes are growing and that signalling onset correlates with a specific phase in their formation. However, the length of the lateral membranes per se was not limiting. Rather, the adherens junctions, which assemble concurrently with membrane deposition, contributed to the high levels of signalling required for transcription, as indicated by the consequences of α-Catenin depletion. Together, these results demonstrate that the establishment of lateral membrane contacts can be limiting for Notch trans-activation and suggest that adherens junctions play an important role in modulating Notch activity.


Assuntos
Junções Aderentes/metabolismo , Proteínas de Drosophila/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Junções Aderentes/ultraestrutura , Animais , Drosophila melanogaster , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , alfa Catenina/metabolismo
5.
EMBO Rep ; 22(10): e52729, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34347930

RESUMO

Accurate Notch signalling is critical for development and homeostasis. Fine-tuning of Notch-ligand interactions has substantial impact on signalling outputs. Recent structural studies have identified a conserved N-terminal C2 domain in human Notch ligands which confers phospholipid binding in vitro. Here, we show that Drosophila ligands Delta and Serrate adopt the same C2 domain structure with analogous variations in the loop regions, including the so-called ß1-2 loop that is involved in phospholipid binding. Mutations in the ß1-2 loop of the Delta C2 domain retain Notch binding but have impaired ability to interact with phospholipids in vitro. To investigate its role in vivo, we deleted five residues within the ß1-2 loop of endogenous Delta. Strikingly, this change compromises ligand function. The modified Delta enhances phenotypes produced by Delta loss-of-function alleles and suppresses that of Notch alleles. As the modified protein is present on the cell surface in normal amounts, these results argue that C2 domain phospholipid binding is necessary for robust signalling in vivo fine-tuning the balance of trans and cis ligand-receptor interactions.


Assuntos
Proteínas de Drosophila , Receptores Notch , Domínios C2 , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Ligantes , Proteínas de Membrana , Fosfolipídeos , Receptores Notch/genética
6.
EMBO Rep ; 20(5)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30914409

RESUMO

Notch signaling plays a key role in many cell fate decisions during development by directing different gene expression programs via the transcription factor CSL, known as Su(H) in Drosophila Which target genes are responsive to Notch signaling is influenced by the chromatin state of enhancers, yet how this is regulated is not fully known. Detecting a specific increase in the histone variant H3.3 in response to Notch signaling, we tested which chromatin remodelers or histone chaperones are required for the changes in enhancer accessibility to Su(H) binding. We show a crucial role for the Brahma SWI/SNF chromatin remodeling complex, including the actin-related BAP55 subunit, in conferring enhancer accessibility and enabling the transcriptional response to Notch activity. The Notch-responsive regions have high levels of nucleosome turnover which depend on the Brahma complex, increase in magnitude with Notch signaling, and primarily involve histone H3.3. Together these results highlight the importance of SWI/SNF-mediated nucleosome turnover in rendering enhancers responsive to Notch.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Proteínas de Drosophila/genética , Receptores Notch/genética , Sequências Reguladoras de Ácido Nucleico/genética , Acetilação , Animais , Proteínas Cromossômicas não Histona/genética , Drosophila/genética , Regulação da Expressão Gênica , Histonas/genética , Nucleossomos/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética
7.
Dev Growth Differ ; 62(1): 4-14, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31886523

RESUMO

Notch signalling controls many key cellular processes which differ according to the context where the pathway is deployed due to the transcriptional activation of specific sets of genes. The pathway is unusual in its lack of amplification, also raising the question of how it can efficiently activate transcription with limited amounts of nuclear activity. Here, we focus on mechanisms that enable Notch to produce appropriate transcriptional responses and speculate on models that could explain the current gaps in knowledge.


Assuntos
Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia , Animais , Humanos , Receptores Notch/genética
8.
PLoS Genet ; 13(11): e1007096, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29155828

RESUMO

Repressors are frequently deployed to limit the transcriptional response to signalling pathways. For example, several co-repressors interact directly with the DNA-binding protein CSL and are proposed to keep target genes silenced in the absence of Notch activity. However, the scope of their contributions remains unclear. To investigate co-repressor activity in the context of this well defined signalling pathway, we have analysed the genome-wide binding profile of the best-characterized CSL co-repressor in Drosophila, Hairless, and of a second CSL interacting repressor, SMRTER. As predicted there was significant overlap between Hairless and its CSL DNA-binding partner, both in Kc cells and in wing discs, where they were predominantly found in chromatin with active enhancer marks. However, while the Hairless complex was widely present at some Notch regulated enhancers in the wing disc, no binding was detected at others, indicating that it is not essential for silencing per se. Further analysis of target enhancers confirmed differential requirements for Hairless. SMRTER binding significantly overlapped with Hairless, rather than complementing it, and many enhancers were apparently co-bound by both factors. Our analysis indicates that the actions of Hairless and SMRTER gate enhancers to Notch activity and to Ecdysone signalling respectively, to ensure that the appropriate levels and timing of target gene expression are achieved.


Assuntos
Proteínas de Drosophila/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Fatores de Transcrição/genética , Animais , Sítios de Ligação , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Genômica , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo
9.
EMBO J ; 34(14): 1889-904, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26069324

RESUMO

The conserved Notch pathway functions in diverse developmental and disease-related processes, requiring mechanisms to ensure appropriate target selection and gene activation in each context. To investigate the influence of chromatin organisation and dynamics on the response to Notch signalling, we partitioned Drosophila chromatin using histone modifications and established the preferred chromatin conditions for binding of Su(H), the Notch pathway transcription factor. By manipulating activity of a co-operating factor, Lozenge/Runx, we showed that it can help facilitate these conditions. While many histone modifications were unchanged by Su(H) binding or Notch activation, we detected rapid changes in acetylation of H3K56 at Notch-regulated enhancers. This modification extended over large regions, required the histone acetyl-transferase CBP and was independent of transcription. Such rapid changes in H3K56 acetylation appear to be a conserved indicator of enhancer activation as they also occurred at the mammalian Notch-regulated Hey1 gene and at Drosophila ecdysone-regulated genes. This intriguing example of a core histone modification increasing over short timescales may therefore underpin changes in chromatin accessibility needed to promote transcription following signalling activation.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Histonas/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Acetilação , Animais , Proteínas de Ciclo Celular/genética , DNA Intergênico , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Ecdisona/metabolismo , Regulação da Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Receptores Notch/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
10.
Development ; 143(2): 219-31, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26657768

RESUMO

Notch signalling is involved in a multitude of developmental decisions and its aberrant activation is linked to many diseases, including cancers. One example is the neural stem cell tumours that arise from constitutive Notch activity in Drosophila neuroblasts. To investigate how hyperactivation of Notch in larval neuroblasts leads to tumours, we combined results from profiling the upregulated mRNAs and mapping the regions bound by the core Notch pathway transcription factor Su(H). This identified 246 putative direct Notch targets. These genes were highly enriched for transcription factors and overlapped significantly with a previously identified regulatory programme dependent on the proneural transcription factor Asense. Included were genes associated with the neuroblast maintenance and self-renewal programme that we validated as Notch regulated in vivo. Another group were the so-called temporal transcription factors, which have been implicated in neuroblast maturation. Normally expressed in specific time windows, several temporal transcription factors were ectopically expressed in the stem cell tumours, suggesting that Notch had reprogrammed their normal temporal regulation. Indeed, the Notch-induced hyperplasia was reduced by mutations affecting two of the temporal factors, which, conversely, were sufficient to induce mild hyperplasia on their own. Altogether, the results suggest that Notch induces neuroblast tumours by directly promoting the expression of genes that contribute to stem cell identity and by reprogramming the expression of factors that could regulate maturity.


Assuntos
Proteínas de Drosophila/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Receptores Notch/metabolismo , Animais , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster , Receptores Notch/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Development ; 142(6): 1102-12, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25725070

RESUMO

Morphogenesis is crucial during development to generate organs and tissues of the correct size and shape. During Drosophila late eye development, interommatidial cells (IOCs) rearrange to generate the highly organized pupal lattice, in which hexagonal ommatidial units pack tightly. This process involves the fine regulation of adherens junctions (AJs) and of adhesive E-Cadherin (E-Cad) complexes. Localized accumulation of Bazooka (Baz), the Drosophila PAR3 homolog, has emerged as a critical step to specify where new E-Cad complexes should be deposited during junction remodeling. However, the mechanisms controlling the correct localization of Baz are still only partly understood. We show here that Drosophila Magi, the sole fly homolog of the mammalian MAGI scaffolds, is an upstream regulator of E-Cad-based AJs during cell rearrangements, and that Magi mutant IOCs fail to reach their correct position. We uncover a direct physical interaction between Magi and the Ras association domain protein RASSF8 through a WW domain-PPxY motif binding, and show that apical Magi recruits the RASSF8-ASPP complex during AJ remodeling in IOCs. We further show that this Magi complex is required for the cortical recruitment of Baz and of the E-Cad-associated proteins α- and ß-catenin. We propose that, by controlling the proper localization of Baz to remodeling junctions, Magi and the RASSF8-ASPP complex promote the recruitment or stabilization of E-Cad complexes at junction sites.


Assuntos
Junções Aderentes/fisiologia , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Olho/embriologia , Morfogênese/fisiologia , Núcleosídeo-Fosfato Quinase/metabolismo , Junções Aderentes/metabolismo , Animais , Western Blotting , Drosophila , Imuno-Histoquímica , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/metabolismo , Plasmídeos/genética , Técnicas do Sistema de Duplo-Híbrido
12.
EMBO J ; 32(1): 60-71, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23232763

RESUMO

The outcome of the Notch pathway on proliferation depends on cellular context, being growth promotion in some, including several cancers, and growth inhibition in others. Such disparate outcomes are evident in Drosophila wing discs, where Notch overactivation causes hyperplasia despite having localized inhibitory effects on proliferation. To understand the underlying mechanisms, we have used genomic strategies to identify the Notch-CSL target genes directly activated during wing disc hyperplasia. Among them were genes involved in both autonomous and non-autonomous regulation of proliferation, growth and cell death, providing molecular explanations for many characteristics of Notch induced wing disc hyperplasia previously reported. The Notch targets exhibit different response patterns, which are shaped by both positive and negative feed-forward regulation between the Notch targets themselves. We propose, therefore, that both the characteristics of the direct Notch targets and their cross-regulatory relationships are important in coordinating the pattern of hyperplasia.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Hiperplasia/genética , Receptores Notch/genética , Transdução de Sinais/fisiologia , Asas de Animais/embriologia , Animais , Animais Geneticamente Modificados , Divisão Celular , Proliferação de Células , Imunoprecipitação da Cromatina , Drosophila/embriologia , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Proteínas de Drosophila/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genômica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Receptores Notch/metabolismo , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/fisiologia
13.
Mol Cell ; 35(6): 782-93, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19782028

RESUMO

Histone chaperones are involved in a variety of chromatin transactions. By a proteomics survey, we identified the interaction networks of histone chaperones ASF1, CAF1, HIRA, and NAP1. Here, we analyzed the cooperation of H3/H4 chaperone ASF1 and H2A/H2B chaperone NAP1 with two closely related silencing complexes: LAF and RLAF. NAP1 binds RPD3 and LID-associated factors (RLAF) comprising histone deacetylase RPD3, histone H3K4 demethylase LID/KDM5, SIN3A, PF1, EMSY, and MRG15. ASF1 binds LAF, a similar complex lacking RPD3. ASF1 and NAP1 link, respectively, LAF and RLAF to the DNA-binding Su(H)/Hairless complex, which targets the E(spl) NOTCH-regulated genes. ASF1 facilitates gene-selective removal of the H3K4me3 mark by LAF but has no effect on H3 deacetylation. NAP1 directs high nucleosome density near E(spl) control elements and mediates both H3 deacetylation and H3K4me3 demethylation by RLAF. We conclude that histone chaperones ASF1 and NAP1 differentially modulate local chromatin structure during gene-selective silencing.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Inativação Gênica , Histona Desacetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Acetilação , Animais , Proteínas de Ciclo Celular/genética , Montagem e Desmontagem da Cromatina , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilase 1 , Histona Desacetilases/genética , Histona Desmetilases , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Metilação , Chaperonas Moleculares/genética , Complexos Multiproteicos , Proteínas Nucleares/genética , Proteína 1 de Modelagem do Nucleossomo , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteômica/métodos , Receptores Notch/genética , Proteínas Repressoras/genética , Transcrição Gênica
14.
Nucleic Acids Res ; 42(16): 10550-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25114055

RESUMO

Regulation of transcription is fundamental to development and physiology, and occurs through binding of transcription factors to specific DNA sequences in the genome. CSL (CBF1/Suppressor of Hairless/LAG-1), a core component of the Notch signaling pathway, is one such transcription factor that acts in concert with co-activators or co-repressors to control the activity of associated target genes. One fundamental question is how CSL can recognize and select among different DNA sequences available in vivo and whether variations between selected sequences can influence its function. We have therefore investigated CSL-DNA recognition using computational approaches to analyze the energetics of CSL bound to different DNAs and tested the in silico predictions with in vitro and in vivo assays. Our results reveal novel aspects of CSL binding that may help explain the range of binding observed in vivo. In addition, using molecular dynamics simulations, we show that domain-domain correlations within CSL differ significantly depending on the DNA sequence bound, suggesting that different DNA sequences may directly influence CSL function. Taken together, our results, based on computational chemistry approaches, provide valuable insights into transcription factor-DNA binding, in this particular case increasing our understanding of CSL-DNA interactions and how these may impact on its transcriptional control.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Elementos Reguladores de Transcrição , Sítios de Ligação , Simulação por Computador , Sequência Consenso , Citosina/análise , DNA/química , DNA/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/química , Simulação de Dinâmica Molecular , Motivos de Nucleotídeos , Ligação Proteica , Software
15.
PLoS Genet ; 9(1): e1003162, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23300480

RESUMO

Dynamic activity of signaling pathways, such as Notch, is vital to achieve correct development and homeostasis. However, most studies assess output many hours or days after initiation of signaling, once the outcome has been consolidated. Here we analyze genome-wide changes in transcript levels, binding of the Notch pathway transcription factor, CSL [Suppressor of Hairless, Su(H), in Drosophila], and RNA Polymerase II (Pol II) immediately following a short pulse of Notch stimulation. A total of 154 genes showed significant differential expression (DE) over time, and their expression profiles stratified into 14 clusters based on the timing, magnitude, and direction of DE. E(spl) genes were the most rapidly upregulated, with Su(H), Pol II, and transcript levels increasing within 5-10 minutes. Other genes had a more delayed response, the timing of which was largely unaffected by more prolonged Notch activation. Neither Su(H) binding nor poised Pol II could fully explain the differences between profiles. Instead, our data indicate that regulatory interactions, driven by the early-responding E(spl)bHLH genes, are required. Proposed cross-regulatory relationships were validated in vivo and in cell culture, supporting the view that feed-forward repression by E(spl)bHLH/Hes shapes the response of late-responding genes. Based on these data, we propose a model in which Hes genes are responsible for co-ordinating the Notch response of a wide spectrum of other targets, explaining the critical functions these key regulators play in many developmental and disease contexts.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Drosophila , Drosophila , Receptores Notch , Proteínas Repressoras , Transdução de Sinais/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação/genética , Sequência Conservada/genética , Proteínas de Ligação a DNA , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica , Ativação Transcricional
16.
Development ; 139(14): 2584-93, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22736244

RESUMO

The generation of functional structures during development requires tight spatial regulation of signaling pathways. Thus, in Drosophila legs, in which Notch pathway activity is required to specify joints, only cells distal to ligand-producing cells are capable of responding. Here, we show that the asymmetric distribution of planar cell polarity (PCP) proteins correlates with this spatial restriction of Notch activation. Frizzled and Dishevelled are enriched at distal sides of each cell and hence localize at the interface with ligand-expressing cells in the non-responding cells. Elimination of PCP gene function in cells proximal to ligand-expressing cells is sufficient to alleviate the repression, resulting in ectopic Notch activity and ectopic joint formation. Mutations that compromise a direct interaction between Dishevelled and Notch reduce the efficacy of repression. Likewise, increased Rab5 levels or dominant-negative Deltex can suppress the ectopic joints. Together, these results suggest that PCP coordinates the spatial activity of the Notch pathway by regulating endocytic trafficking of the receptor.


Assuntos
Polaridade Celular/fisiologia , Receptores Notch/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Polaridade Celular/genética , Proteínas Desgrenhadas , Drosophila , Proteínas de Drosophila , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Receptores Notch/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
17.
Methods ; 68(1): 173-82, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24704358

RESUMO

Notch signaling involves a highly conserved pathway that mediates communication between neighboring cells. Activation of Notch by its ligands, results in the release of the Notch intracellular domain (NICD), which enters the nucleus and regulates transcription. This pathway has been implicated in many developmental decisions and diseases (including cancers) over the past decades. The simplicity of the Notch pathway in Drosophila melanogaster, in combination with the availability of powerful genetics, make this an attractive model for studying fundamental principles of Notch regulation and function. In this article we present some of the established and emerging tools that are available to monitor and manipulate the Notch pathway in Drosophila and discuss their strengths and weaknesses.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Receptores Notch/genética , Transdução de Sinais , Animais , Proteínas de Drosophila/metabolismo , Ligantes , Biologia Molecular/métodos , Receptores Notch/metabolismo
18.
Development ; 137(16): 2633-42, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20610485

RESUMO

Cell-cell signalling mediated by Notch regulates many different developmental and physiological processes and is involved in a variety of human diseases. Activation of Notch impinges directly on gene expression through the Suppressor of Hairless [Su(H)] DNA-binding protein. A major question that remains to be elucidated is how the same Notch signalling pathway can result in different transcriptional responses depending on the cellular context and environment. Here, we have investigated the factors required to confer this specific response in Drosophila adult myogenic progenitor-related cells. Our analysis identifies Twist (Twi) as a crucial co-operating factor. Enhancers from several direct Notch targets require a combination of Twi and Notch activities for expression in vivo; neither alone is sufficient. Twi is bound at target enhancers prior to Notch activation and enhances Su(H) binding to these regulatory regions. To determine the breadth of the combinatorial regulation we mapped Twi occupancy genome-wide in DmD8 myogenic progenitor-related cells by chromatin immunoprecipitation. Comparing the sites bound by Su(H) and by Twi in these cells revealed a strong association, identifying a large spectrum of co-regulated genes. We conclude that Twi is an essential Notch co-regulator in myogenic progenitor cells and has the potential to confer specificity on Notch signalling at over 170 genes, showing that a single factor can have a profound effect on the output of the pathway.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Músculo Esquelético/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Transcrição Gênica , Proteína 1 Relacionada a Twist/metabolismo , Envelhecimento , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Expressão Gênica , Estudo de Associação Genômica Ampla , Ligação Proteica , Receptores Notch/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína 1 Relacionada a Twist/genética
19.
Development ; 137(6): 913-22, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20150280

RESUMO

Gas2-like proteins harbour putative binding sites for both the actin and the microtubule cytoskeleton and could thus mediate crosstalk between these cytoskeletal systems. Family members are highly conserved in all metazoans but their in vivo role is not clear. The sole Drosophila Gas2-like gene, CG3973 (pigs), was recently identified as a transcriptional target of Notch signalling and might therefore link cell fate decisions through Notch activation directly to morphogenetic changes. We have generated a null mutant in CG3973 (pigs): pigs(1) mutants are semi-viable but adult flies are flightless, showing indirect flight muscle degeneration, and females are sterile, showing disrupted oogenesis and severe defects in follicle cell differentiation, similar to phenotypes seen when levels of Notch/Delta signalling are perturbed in these tissues. Loss of Pigs leads to an increase in Notch signalling activity in several tissues. These results indicate that Gas2-like proteins are essential for development and suggest that Pigs acts downstream of Notch as a morphogenetic read-out, and also as part of a regulatory feedback loop to relay back information about the morphogenetic state of cells to restrict Notch activation to appropriate levels in certain target tissues.


Assuntos
Aciltransferases/genética , Aciltransferases/fisiologia , Proteínas de Drosophila/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Receptores Notch/genética , Aciltransferases/metabolismo , Animais , Diferenciação Celular/genética , Forma Celular/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Feminino , Regulação da Expressão Gênica , Crescimento e Desenvolvimento/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Modelos Biológicos , Morfogênese/genética , Folículo Ovariano/citologia , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Plaquinas/genética , Plaquinas/metabolismo , Plaquinas/fisiologia , Receptores Notch/metabolismo , Receptores Notch/fisiologia , Homologia de Sequência , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
20.
Dev Cell ; 13(4): 593-600, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17925233

RESUMO

The histone chaperone Asf1 assists in chromatin assembly and remodeling during replication, transcription activation, and gene silencing. However, it has been unclear to what extent Asf1 could be targeted to specific loci via interactions with sequence-specific DNA-binding proteins. Here, we show that Asf1 contributes to the repression of Notch target genes, as depletion of Asf1 in cells by RNAi causes derepression of the E(spl) Notch-inducible genes. Conversely, overexpression of Asf1 in vivo results in decreased expression of target genes and produces phenotypes that are strongly modified (enhanced and suppressed) by mutations affecting the Notch pathway, but not by mutations in other signaling pathways. Asf1 can be coprecipitated with the DNA-binding protein Su(H) and the corepressor Hairless and interacts directly with two components of this complex, Hairless and SKIP. Thus, in addition to playing more general roles in chromatin dynamics, Asf1 is directed via interactions with sequence-specific complexes to mediate silencing of specific target genes.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Inativação Gênica , Animais , Proteínas de Ciclo Celular/genética , Olho Composto de Artrópodes/anormalidades , Olho Composto de Artrópodes/metabolismo , Olho Composto de Artrópodes/fisiologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutação , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Asas de Animais/anormalidades , Asas de Animais/metabolismo , Asas de Animais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA