Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 165(1): 125-138, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27015310

RESUMO

Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação do Apetite , Glucose/metabolismo , Resistência à Insulina , Neurônios/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Comportamento Alimentar , Camundongos , Miostatina/genética , Optogenética , Transcriptoma
2.
Cell ; 162(6): 1404-17, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26359991

RESUMO

Activation of orexigenic AgRP-expressing neurons in the arcuate nucleus of the hypothalamus potently promotes feeding, thus defining new regulators of AgRP neuron activity could uncover potential novel targets for obesity treatment. Here, we demonstrate that AgRP neurons express the purinergic receptor 6 (P2Y6), which is activated by uridine-diphosphate (UDP). In vivo, UDP induces ERK phosphorylation and cFos expression in AgRP neurons and promotes action potential firing of these neurons in brain slice recordings. Consequently, central application of UDP promotes feeding, and this response is abrogated upon pharmacologic or genetic inhibition of P2Y6 as well as upon pharmacogenetic inhibition of AgRP neuron activity. In obese animals, hypothalamic UDP content is elevated as a consequence of increased circulating uridine concentrations. Collectively, these experiments reveal a potential regulatory pathway in obesity, where peripheral uridine increases hypothalamic UDP concentrations, which in turn can promote feeding via PY6-dependent activation of AgRP neurons.


Assuntos
Regulação do Apetite , Hipotálamo/metabolismo , Obesidade/metabolismo , Receptores Purinérgicos P2/metabolismo , Difosfato de Uridina/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Modelos Animais de Doenças , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Curr Biol ; 30(23): 4579-4593.e7, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32976803

RESUMO

Locomotion requires energy, yet animals need to increase locomotion in order to find and consume food in energy-deprived states. While such energy homeostatic coordination suggests brain origin, whether the central melanocortin 4 receptor (Mc4r) system directly modulates locomotion through motor circuits is unknown. Here, we report that hypothalamic Pomc neurons in zebrafish and mice have long-range projections into spinal cord regions harboring Mc4r-expressing V2a interneurons, crucial components of the premotor networks. Furthermore, in zebrafish, Mc4r activation decreases the excitability of spinal V2a neurons as well as swimming and foraging, while systemic or V2a neuron-specific blockage of Mc4r promotes locomotion. In contrast, in mice, electrophysiological recordings revealed that two-thirds of V2a neurons in lamina X are excited by the Mc4r agonist α-MSH, and acute inhibition of Mc4r signaling reduces locomotor activity. In addition, we found other Mc4r neurons in spinal lamina X that are inhibited by α-MSH, which is in line with previous studies in rodents where Mc4r agonists reduced locomotor activity. Collectively, our studies identify spinal V2a interneurons as evolutionary conserved second-order neurons of the central Mc4r system, providing a direct anatomical and functional link between energy homeostasis and locomotor control systems. The net effects of this modulatory system on locomotor activity can vary between different vertebrate species and, possibly, even within one species. We discuss the biological sense of this phenomenon in light of the ambiguity of locomotion on energy balance and the different living conditions of the different species.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Interneurônios/metabolismo , Locomoção/fisiologia , Pró-Opiomelanocortina/metabolismo , Medula Espinal/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Núcleo Arqueado do Hipotálamo/citologia , Evolução Biológica , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Camundongos , Modelos Animais , Rede Nervosa/fisiologia , Pró-Opiomelanocortina/genética , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/agonistas , Proteínas de Peixe-Zebra/genética
4.
Cell Metab ; 31(6): 1189-1205.e13, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32433922

RESUMO

Astrocytes represent central regulators of brain glucose metabolism and neuronal function. They have recently been shown to adapt their function in response to alterations in nutritional state through responding to the energy state-sensing hormones leptin and insulin. Here, we demonstrate that glucagon-like peptide (GLP)-1 inhibits glucose uptake and promotes ß-oxidation in cultured astrocytes. Conversely, postnatal GLP-1 receptor (GLP-1R) deletion in glial fibrillary acidic protein (GFAP)-expressing astrocytes impairs astrocyte mitochondrial integrity and activates an integrated stress response with enhanced fibroblast growth factor (FGF)21 production and increased brain glucose uptake. Accordingly, central neutralization of FGF21 or astrocyte-specific FGF21 inactivation abrogates the improvements in glucose tolerance and learning in mice lacking GLP-1R expression in astrocytes. Collectively, these experiments reveal a role for astrocyte GLP-1R signaling in maintaining mitochondrial integrity, and lack of GLP-1R signaling mounts an adaptive stress response resulting in an improvement of systemic glucose homeostasis and memory formation.


Assuntos
Astrócitos/metabolismo , Ácidos Graxos/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Mitocôndrias/metabolismo , Animais , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Oxirredução , Transdução de Sinais
5.
Neuron ; 106(6): 1009-1025.e10, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32302532

RESUMO

Calorie-rich diets induce hyperphagia and promote obesity, although the underlying mechanisms remain poorly defined. We find that short-term high-fat-diet (HFD) feeding of mice activates prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus of the hypothalamus (ARC). PNOCARC neurons represent a previously unrecognized GABAergic population of ARC neurons distinct from well-defined feeding regulatory AgRP or POMC neurons. PNOCARC neurons arborize densely in the ARC and provide inhibitory synaptic input to nearby anorexigenic POMC neurons. Optogenetic activation of PNOCARC neurons in the ARC and their projections to the bed nucleus of the stria terminalis promotes feeding. Selective ablation of these cells promotes the activation of POMC neurons upon HFD exposure, reduces feeding, and protects from obesity, but it does not affect food intake or body weight under normal chow consumption. We characterize PNOCARC neurons as a novel ARC neuron population activated upon palatable food consumption to promote hyperphagia.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Dieta Hiperlipídica , Comportamento Alimentar/fisiologia , Neurônios GABAérgicos/fisiologia , Hiperfagia , Obesidade , Aumento de Peso/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Neurônios GABAérgicos/metabolismo , Camundongos , Inibição Neural/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética , Pró-Opiomelanocortina/metabolismo , Precursores de Proteínas/metabolismo , Receptores Opioides/metabolismo , Núcleos Septais/fisiologia
6.
Nat Commun ; 9(1): 3432, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143607

RESUMO

p53 is a well-known tumor suppressor that has emerged as an important player in energy balance. However, its metabolic role in the hypothalamus remains unknown. Herein, we show that mice lacking p53 in agouti-related peptide (AgRP), but not proopiomelanocortin (POMC) or steroidogenic factor-1 (SF1) neurons, are more prone to develop diet-induced obesity and show reduced brown adipose tissue (BAT) thermogenic activity. AgRP-specific ablation of p53 resulted in increased hypothalamic c-Jun N-terminal kinase (JNK) activity before the mice developed obesity, and central inhibition of JNK reversed the obese phenotype of these mice. The overexpression of p53 in the ARC or specifically in AgRP neurons of obese mice decreased body weight and stimulated BAT thermogenesis, resulting in body weight loss. Finally, p53 in AgRP neurons regulates the ghrelin-induced food intake and body weight. Overall, our findings provide evidence that p53 in AgRP neurons is required for normal adaptations against diet-induced obesity.


Assuntos
Dieta/efeitos adversos , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Tecido Adiposo Marrom/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 8 Ativada por Mitógeno/genética , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Ratos Sprague-Dawley , Fator Esteroidogênico 1/metabolismo , Proteína Supressora de Tumor p53/genética
7.
Cell Rep ; 18(7): 1587-1597, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28199831

RESUMO

Uridine-diphosphate (UDP) and its receptor P2Y6 have recently been identified as regulators of AgRP neurons. UDP promotes feeding via activation of P2Y6 receptors on AgRP neurons, and hypothalamic UDP concentrations are increased in obesity. However, it remained unresolved whether inhibition of P2Y6 signaling pharmacologically, globally, or restricted to AgRP neurons can improve obesity-associated metabolic dysfunctions. Here, we demonstrate that central injection of UDP acutely promotes feeding in diet-induced obese mice and that acute pharmacological blocking of CNS P2Y6 receptors reduces food intake. Importantly, mice with AgRP-neuron-restricted inactivation of P2Y6 exhibit reduced food intake and fat mass as well as improved systemic insulin sensitivity with improved insulin action in liver. Our results reveal that P2Y6 signaling in AgRP neurons is involved in the onset of obesity-associated hyperphagia and systemic insulin resistance. Collectively, these experiments define P2Y6 as a potential target to pharmacologically restrict both feeding and systemic insulin resistance in obesity.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Resistência à Insulina/fisiologia , Neurônios/efeitos dos fármacos , Obesidade/tratamento farmacológico , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Dieta/métodos , Modelos Animais de Doenças , Comportamento Alimentar/efeitos dos fármacos , Hiperfagia/tratamento farmacológico , Hiperfagia/metabolismo , Insulina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Neurônios/metabolismo , Obesidade/metabolismo , Difosfato de Uridina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA