Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 25(6): 1116-28, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26769677

RESUMO

Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease that affects the development and survival of sensory and autonomic neurons. FD is caused by an mRNA splicing mutation in intron 20 of the IKBKAP gene that results in a tissue-specific skipping of exon 20 and a corresponding reduction of the inhibitor of kappaB kinase complex-associated protein (IKAP), also known as Elongator complex protein 1. To date, several promising therapeutic candidates for FD have been identified that target the underlying mRNA splicing defect, and increase functional IKAP protein. Despite these remarkable advances in drug discovery for FD, we lacked a phenotypic mouse model in which we could manipulate IKBKAP mRNA splicing to evaluate potential efficacy. We have, therefore, engineered a new mouse model that, for the first time, will permit to evaluate the phenotypic effects of splicing modulators and provide a crucial platform for preclinical testing of new therapies. This new mouse model, TgFD9; Ikbkap(Δ20/flox) was created by introducing the complete human IKBKAP transgene with the major FD splice mutation (TgFD9) into a mouse that expresses extremely low levels of endogenous Ikbkap (Ikbkap(Δ20/flox)). The TgFD9; Ikbkap(Δ20/flox) mouse recapitulates many phenotypic features of the human disease, including reduced growth rate, reduced number of fungiform papillae, spinal abnormalities, and sensory and sympathetic impairments, and recreates the same tissue-specific mis-splicing defect seen in FD patients. This is the first mouse model that can be used to evaluate in vivo the therapeutic effect of increasing IKAP levels by correcting the underlying FD splicing defect.


Assuntos
Modelos Animais de Doenças , Disautonomia Familiar/metabolismo , Disautonomia Familiar/patologia , Processamento Alternativo , Animais , Vias Autônomas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Disautonomia Familiar/genética , Éxons , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Íntrons , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Splicing de RNA/genética , RNA Mensageiro/metabolismo , Células Receptoras Sensoriais/metabolismo
2.
SLAS Discov ; 24(1): 57-67, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085848

RESUMO

Familial dysautonomia (FD) is an autonomic and sensory neuropathy caused by a mutation in the splice donor site of intron 20 of the ELP1 gene. Variable skipping of exon 20 leads to a tissue-specific reduction in the level of ELP1 protein. We have shown that the plant cytokinin kinetin is able to increase cellular ELP1 protein levels in vivo and in vitro through correction of ELP1 splicing. Studies in FD patients determined that kinetin is not a practical therapy due to low potency and rapid elimination. To identify molecules with improved potency and efficacy, we developed a cell-based luciferase splicing assay by inserting renilla (Rluc) and firefly (Fluc) luciferase reporters into our previously well-characterized ELP1 minigene construct. Evaluation of the Fluc/Rluc signal ratio enables a fast and accurate way to measure exon 20 inclusion. Further, we developed a secondary assay that measures ELP1 splicing in FD patient-derived fibroblasts. Here we demonstrate the quality and reproducibility of our screening method. Development and implementation of this screening platform has allowed us to efficiently screen for new compounds that robustly and specifically enhance ELP1 pre-mRNA splicing.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Disautonomia Familiar/genética , Precursores de RNA/genética , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Elongação da Transcrição/genética , Linhagem Celular , Citocininas/farmacologia , Éxons/efeitos dos fármacos , Éxons/genética , Células HEK293 , Humanos , Cinetina/farmacologia , Splicing de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA