Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomech Eng ; 145(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35864788

RESUMO

We examined the sensitivity of internal tibial forces and moments during running to different subtalar/ankle moment constraints in a static optimization routine. Seventeen participants ran at 2.20, 3.33, and 4.17 ms-1 while force and motion data were collected. Ankle joint contact force was estimated using inverse-dynamics-based static optimization. Three sets of joint moment constraints were tested. All sets included the flexion-extension and abduction-adduction moments at the hip and the flexion-extension moment at the knee but differed in the constraints used at the subtalar/ankle: (1) flexion-extension at the ankle (Sag), (2) flexion-extension and inversion-eversion at ankle (Sag + Front), and (3) flexion-extension at the ankle and supination-pronation at the subtalar (Sag + SubT). Internal tibial forces and moments were quantified at the distal one-third of the tibia, by ensuring static equilibrium with applied forces and moments. No interaction was observed between running speed and constraint for internal tibial forces or moments. Sag + SubT resulted in larger internal mediolateral force (+41%), frontal (+79%), and transverse (+29%) plane moments, compared to Sag and Sag + Front. Internal axial force was greatest in Sag + Front, compared to Sag and Sag + SubT (+37%). Faster running speeds resulted in greater internal tibial forces and moments in all directions (≥+6%). Internal tibial forces and moments at the distal one-third of the tibia were sensitive to the subtalar and ankle joint moment constraints used in the static optimization routine, independent of running speed.


Assuntos
Articulação do Tornozelo , Tíbia , Fenômenos Biomecânicos , Humanos , Articulação do Joelho , Pronação
2.
J Biomech ; 145: 111364, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343415

RESUMO

Changes in gallop stride parameters prior to injury have been documented previously in Thoroughbred racehorses. Validating solutions for quantification of fundamental stride parameters is important for large scale studies investigating injury related factors. This study describes a fast Fourier transformation-based method for extracting stride frequency (SF) values from speed fluctuations recorded with a standalone GPS-logger suitable for galloping horses. Limits of agreement with SF values derived from inertial measurement unit (IMU) pitch data are presented. Twelve Thoroughbred horses were instrumented with a GPS-logger (Vbox sport, Racelogic, 10 Hz samplerate) and a IMU-logger (Xsens DOT, Xsens, 120 Hz samplerate), both attached to the saddlecloth in the midline caudal to the saddle and time synchronized by minimizing root mean square error between differentiated GPS and IMU heading. Each horse performed three gallop trials with a target speed of 36miles per hour (16.1 ms-1) on a dirt racetrack. Average speed was 16.48 ms-1 ranging from 16.1 to 17.4 ms-1 between horses. Limits of agreement between GPS- and IMU-derived SF had a bias of 0.0032 Hz and a sample-by-sample precision of +/-0.027 Hz calculated over N = 2196 values. The stride length uncertainty related to the trial-by-trial SF precision of 0.0091 Hz achieved across 100 m gallop sections is smaller than the 10 cm decrease in stride length that has been associated with an increased risk of musculoskeletal injury. This suggests that the described method is suitable for calculating fundamental stride parameters in the context of injury prevention in galloping horses.


Assuntos
Esportes , Cavalos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA