RESUMO
BACKGROUND: Pancreatic adenocarcinoma (PC) is a highly lethal malignancy with a survival rate of only 12%. Surveillance is recommended for high-risk individuals (HRIs), but it is not widely adopted. To address this unmet clinical need and drive early diagnosis research, we established the Pancreatic Cancer Early Detection (PRECEDE) Consortium. METHODS: PRECEDE is a multi-institutional international collaboration that has undertaken an observational prospective cohort study. Individuals (aged 18-90 years) are enrolled into 1 of 7 cohorts based on family history and pathogenic germline variant (PGV) status. From April 1, 2020, to November 21, 2022, a total of 3,402 participants were enrolled in 1 of 7 study cohorts, with 1,759 (51.7%) meeting criteria for the highest-risk cohort (Cohort 1). Cohort 1 HRIs underwent germline testing and pancreas imaging by MRI/MR-cholangiopancreatography or endoscopic ultrasound. RESULTS: A total of 1,400 participants in Cohort 1 (79.6%) had completed baseline imaging and were subclassified into 3 groups based on familial PC (FPC; n=670), a PGV and FPC (PGV+/FPC+; n=115), and a PGV with a pedigree that does not meet FPC criteria (PGV+/FPC-; n=615). One HRI was diagnosed with stage IIB PC on study entry, and 35.1% of HRIs harbored pancreatic cysts. Increasing age (odds ratio, 1.05; P<.001) and FPC group assignment (odds ratio, 1.57; P<.001; relative to PGV+/FPC-) were independent predictors of harboring a pancreatic cyst. CONCLUSIONS: PRECEDE provides infrastructure support to increase access to clinical surveillance for HRIs worldwide, while aiming to drive early PC detection advancements through longitudinal standardized clinical data, imaging, and biospecimen captures. Increased cyst prevalence in HRIs with FPC suggests that FPC may infer distinct biological processes. To enable the development of PC surveillance approaches better tailored to risk category, we recommend adoption of subclassification of HRIs into FPC, PGV+/FPC+, and PGV+/FPC- risk groups by surveillance protocols.
Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/epidemiologia , Detecção Precoce de Câncer/métodos , Estudos Prospectivos , Predisposição Genética para Doença , Imageamento por Ressonância MagnéticaRESUMO
Polyguanine tracts (PolyGs) are short guanine homopolymer repeats that are prone to accumulating mutations when cells divide. This feature makes them especially suitable for cell lineage tracing, which has been exploited to detect and characterize precancerous and cancerous somatic evolution. PolyG genotyping, however, is challenging because of the inherent biochemical difficulties in amplifying and sequencing repetitive regions. To overcome this limitation, we developed PolyG-DS, a next-generation sequencing (NGS) method that combines the error-correction capabilities of duplex sequencing (DS) with enrichment of PolyG loci using CRISPR-Cas9-targeted genomic fragmentation. PolyG-DS markedly reduces technical artifacts by comparing the sequences derived from the complementary strands of each original DNA molecule. We demonstrate that PolyG-DS genotyping is accurate, reproducible, and highly sensitive, enabling the detection of low-frequency alleles (<0.01) in spike-in samples using a panel of only 19 PolyG markers. PolyG-DS replicated prior results based on PolyG fragment length analysis by capillary electrophoresis, and exhibited higher sensitivity for identifying clonal expansions in the nondysplastic colon of patients with ulcerative colitis. We illustrate the utility of this method for resolving the phylogenetic relationship among precancerous lesions in ulcerative colitis and for tracing the metastatic dissemination of ovarian cancer. PolyG-DS enables the study of tumor evolution without prior knowledge of tumor driver mutations and provides a tool to perform cost-effective and easily scalable ultra-accurate NGS-based PolyG genotyping for multiple applications in biology, genetics, and cancer research.
Assuntos
Linhagem da Célula , DNA/genética , Guanina/química , Neoplasias/genética , Poli G/genética , Diferenciação Celular , Evolução Clonal , DNA/química , Genótipo , HumanosRESUMO
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer that is characterized by its poor prognosis, rapid progression and development of drug resistance. Chemotherapy is a vital treatment option for most of PDAC patients. Stratification of PDAC patients, who would have a higher likelihood of responding to chemotherapy, could facilitate treatment selection and patient management. METHODS: A quantitative proteomic study was performed to characterize the protein profiles in the plasma of PDAC patients undergoing chemotherapy to determine if specific biomarkers could be used to predict likelihood of therapeutic response. RESULTS: By comparing the plasma proteome of the PDAC patients with positive therapeutic response and longer overall survival (Good-responders) to those who did not respond as well with shorter survival time (Limited-responders), we identified differential proteins and protein variants that could effectively segregate Good-responders from Limited-responders. Functional clustering and pathway analysis further suggested that many of these differential proteins were involved in pancreatic tumorigenesis. Four proteins, including vitamin-K dependent protein Z (PZ), sex hormone-binding globulin (SHBG), von Willebrand factor (VWF) and zinc-alpha-2-glycoprotein (AZGP1), were further evaluated as single or composite predictive biomarker with/without inclusion of CA 19-9. A composite biomarker panel that consists of PZ, SHBG, VWF and CA 19-9 demonstrated the best performance in distinguishing Good-responders from Limited-responders. CONCLUSION: Based on the cohort investigated, our data suggested that systemic proteome alterations involved in pathways associated with inflammation, immunoresponse, coagulation and complement cascades may be reporters of chemo-treatment outcome in PDAC patients. For the majority of the patients involved, the panel consisting of PZ, SHBG, VWF and CA 19-9 was able to segregate Good-responders from Limited-responders effectively. Our data also showed that dramatic fluctuations of biomarker concentration in the circulating system of a PDAC patient, which might result from biological heterogeneity or confounding complications, could diminish the performance of a biomarker. Categorization of PDAC patients in terms of their tumor stages and histological types could potentially facilitate patient stratification for treatment.
RESUMO
Cumulative evidence indicates that a significant proportion of cancer evolution may occur before the development of histological abnormalities. While recent improvements in DNA sequencing technology have begun to reveal the presence of these early preneoplastic clones, the concept of 'premalignant field' was already introduced by Slaughter more than half a century ago. Also referred to as 'field effect', 'field defect' or 'field cancerization', these terms describe the phenomenon by which molecular alterations develop in normal-appearing tissue and expand to form premalignant patches with the potential to progress to dysplasia and cancer. Field effects have been well-characterized in ulcerative colitis, an inflammatory bowel disease that increases the risk of colorectal cancer. The study of the molecular alterations that define these fields is informative of mechanisms of tumor initiation and progression and has provided potential targets for early cancer detection. Herein, we summarize the current knowledge about the molecular alterations that comprise the field effect in ulcerative colitis and the clinical utility of these fields for cancer screening and prevention.
Assuntos
Colite Ulcerativa/complicações , Neoplasias Colorretais , Lesões Pré-Cancerosas , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , Lesões Pré-Cancerosas/etiologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologiaRESUMO
OBJECTIVE: Blood vessel epicardial substance (BVES) is a tight junction-associated protein that regulates epithelial-mesenchymal states and is underexpressed in epithelial malignancy. However, the functional impact of BVES loss on tumourigenesis is unknown. Here we define the in vivo role of BVES in colitis-associated cancer (CAC), its cellular function and its relevance to patients with IBD. DESIGN: We determined BVES promoter methylation status using an Infinium HumanMethylation450 array screen of patients with UC with and without CAC. We also measured BVES mRNA levels in a tissue microarray consisting of normal colons and CAC samples. Bves-/- and wild-type mice (controls) were administered azoxymethane (AOM) and dextran sodium sulfate (DSS) to induce tumour formation. Last, we used a yeast two-hybrid screen to identify BVES interactors and performed mechanistic studies in multiple cell lines to define how BVES reduces c-Myc levels. RESULTS: BVES mRNA was reduced in tumours from patients with CAC via promoter hypermethylation. Importantly, BVES promoter hypermethylation was concurrently present in distant non-malignant-appearing mucosa. As seen in human patients, Bves was underexpressed in experimental inflammatory carcinogenesis, and Bves-/- mice had increased tumour multiplicity and degree of dysplasia after AOM/DSS administration. Molecular analysis of Bves-/- tumours revealed Wnt activation and increased c-Myc levels. Mechanistically, we identified a new signalling pathway whereby BVES interacts with PR61α, a protein phosphatase 2A regulatory subunit, to mediate c-Myc destruction. CONCLUSION: Loss of BVES promotes inflammatory tumourigenesis through dysregulation of Wnt signalling and the oncogene c-Myc. BVES promoter methylation status may serve as a CAC biomarker.
Assuntos
Carcinogênese/genética , Moléculas de Adesão Celular/genética , Colite Ulcerativa/metabolismo , Neoplasias do Colo/metabolismo , Proteínas de Membrana/genética , Proteínas Musculares/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Biomarcadores Tumorais/genética , Células CACO-2 , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colite Ulcerativa/genética , Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Metilação de DNA , Sulfato de Dextrana , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/metabolismo , Via de Sinalização WntRESUMO
The advent of high-resolution and frequency mass spectrometry has ushered in an era of data-independent acquisition (DIA). This approach affords enormous multiplexing capacity and is particularly suitable for clinical biomarker studies. However, DIA-based quantification of clinical plasma samples is a daunting task due to the high complexity of clinical plasma samples, the diversity of peptides within the samples, and the high biologic dynamic range of plasma proteins. Here we applied DIA methodology, including a highly reproducible sample preparation and LC-MS/MS analysis, and assessed its utility for clinical plasma biomarker detection. A pancreatic cancer-relevant plasma spectral library was constructed consisting of over 14â¯000 confidently identified peptides derived from over 2300 plasma proteins. Using a nonhuman protein as the internal standard, various empirical parameters were explored to maximize the reliability and reproducibility of the DIA quantification. The DIA parameters were optimized based on the quantification cycle times and fragmentation profile complexity. Higher analytical and biological reproducibility was recorded for the tryptic peptides without labile residues and missed cleavages. Quantification reliability was developed for the peptides identified within a consistent retention time and signal intensity. Linear analytical dynamic range and the lower limit of quantification were assessed, suggesting the critical role of sample complexity in optimizing DIA settings. Technical validation of the assay using a cohort of clinical plasma indicated the robustness and unique advantage for targeted analysis of clinical plasma samples in the context of biomarker development.
Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Pancreáticas/sangue , Peptídeos/sangue , Proteômica , Cromatografia Líquida , Humanos , Espectrometria de Massas em TandemRESUMO
We recently demonstrated that plectin is a robust biomarker for pancreatic ductal adenocarcinoma (PDAC), one of the most aggressive malignancies. In normal physiology, plectin is an intracellular scaffolding protein, but we have demonstrated localization on the extracellular surface of PDAC cells. In this study, we confirmed cell surface localization. Interestingly, we found that plectin cell surface localization was attributable to its presence in exosomes secreted from PDAC cells, which is dependent on the expression of integrin ß4, a protein known to interact with cytosolic plectin. Moreover, plectin expression was necessary for efficient exosome production and was required to sustain enhanced tumor growth in immunodeficient and in immunocompetent mice. It is now clear that this PDAC biomarker plays a role in PDAC, and further understanding of plectin's contribution to PDAC could enable improved therapies.
Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/fisiopatologia , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Plectina/metabolismo , Análise de Variância , Animais , Linhagem Celular Tumoral , Primers do DNA/genética , Exossomos/ultraestrutura , Citometria de Fluxo , Humanos , Immunoblotting , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Espectrometria de Massas , Camundongos , Microscopia Eletrônica de Transmissão , ProteômicaRESUMO
Proteomics study of pancreatic cancer using bodily fluids emphasizes biomarker discovery and clinical application, presenting unique prospect and challenges. Depending on the physiological nature of the bodily fluid and its proximity to pancreatic cancer, the proteomes of bodily fluids, such as pancreatic juice, pancreatic cyst fluid, blood, bile, and urine, can be substantially different in terms of protein constitution and the dynamic range of protein concentration. Thus, a comprehensive discovery and specific detection of cancer-associated proteins within these varied fluids is a complex task, requiring rigorous experiment design and a concerted approach. While major challenges still remain, fluid proteomics studies in pancreatic cancer to date have provided a wealth of information in revealing proteome alterations associated with pancreatic cancer in various bodily fluids.
Assuntos
Líquidos Corporais/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Bile/metabolismo , Líquido Cístico/metabolismo , Humanos , Espectrometria de Massas/métodos , Cisto Pancreático/metabolismo , Suco Pancreático/metabolismo , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/urinaRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with a dismal prognosis. However, while most patients die within the first year of diagnosis, very rarely, a few patients can survive for >10 years. Better understanding the molecular characteristics of the pancreatic adenocarcinomas from these very-long-term survivors (VLTS) may provide clues for personalized medicine and improve current pancreatic cancer treatment. To extend our previous investigation, we examined the proteomes of individual pancreas tumor tissues from a group of VLTS patients (survival ≥10 years) and short-term survival patients (STS, survival <14 months). With a given analytical sensitivity, the protein profile of each pancreatic tumor tissue was compared to reveal the proteome alterations that may be associated with pancreatic cancer survival. Pathway analysis of the differential proteins identified suggested that MYC, IGF1R and p53 were the top three upstream regulators for the STS-associated proteins, and VEGFA, APOE and TGFß-1 were the top three upstream regulators for the VLTS-associated proteins. Immunohistochemistry analysis using an independent cohort of 145 PDAC confirmed that the higher abundance of ribosomal protein S8 (RPS8) and prolargin (PRELP) were correlated with STS and VLTS, respectively. Multivariate Cox analysis indicated that 'High-RPS8 and Low-PRELP' was significantly associated with shorter survival time (HR=2.69, 95% CI 1.46-4.92, P=0.001). In addition, galectin-1, a previously identified protein with its abundance aversely associated with pancreatic cancer survival, was further evaluated for its significance in cancer-associated fibroblasts. Knockdown of galectin-1 in pancreatic cancer-associated fibroblasts dramatically reduced cell migration and invasion. The results from our study suggested that PRELP, LGALS1 and RPS8 might be significant prognostic factors, and RPS8 and LGALS1 could be potential therapeutic targets to improve pancreatic cancer survival if further validated.
Assuntos
Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Análise de Sobrevida , Adenocarcinoma/cirurgia , Carcinoma Ductal Pancreático/cirurgia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/cirurgia , ProteômicaRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is the fourth-leading cause of cancer-related death in the United States and is associated with a dismal prognosis, particularly when diagnosed at an advanced stage. Overall survival is significantly improved if PDAC is detected at an early stage prior to the onset of symptoms. At present, there is no suitable screening strategy for the general population. Available diagnostic serum markers are not sensitive or specific enough, and clinically available imaging modalities are inadequate for visualizing early-stage lesions. In this article, the role of currently available blood biomarkers and imaging tests for the early detection of PDAC will be reviewed. Also, the emerging biomarkers and molecularly targeted imaging agents being developed to improve the specificity of current imaging modalities for PDAC will be discussed. A strategy incorporating blood biomarkers and molecularly targeted imaging agents could lead to improved screening and earlier detection of PDAC in the future. (©) RSNA, 2015.
Assuntos
Adenocarcinoma/diagnóstico , Biomarcadores/sangue , Carcinoma Ductal Pancreático/diagnóstico , Diagnóstico por Imagem/métodos , Detecção Precoce de Câncer/métodos , Neoplasias Pancreáticas/diagnóstico , Proteínas Sanguíneas/análise , Colangiopancreatografia Retrógrada Endoscópica , Meios de Contraste , Análise Custo-Benefício , Metilação de DNA , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , MicroRNAs/sangue , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios XRESUMO
PURPOSE: To test ultrasonographic (US) imaging with vascular endothelial growth factor receptor type 2 (VEGFR2)-targeted microbubble contrast material for the detection of pancreatic ductal adenocarcinoma (PDAC) in a transgenic mouse model of pancreatic cancer development. MATERIALS AND METHODS: Experiments involving animals were approved by the Institutional Administrative Panel on Laboratory Animal Care at Stanford University. Transgenic mice (n = 44; Pdx1-Cre, KRas(G12D), Ink4a(-/-)) that spontaneously develop PDAC starting at 4 weeks of age were imaged by using a dedicated small-animal US system after intravenous injection of 5 × 10(7) clinical-grade VEGFR2-targeted microbubble contrast material. The pancreata in wild-type (WT) mice (n = 64) were scanned as controls. Pancreatic tissue was analyzed ex vivo by means of histologic examination (with hematoxylin-eosin staining) and immunostaining of vascular endothelial cell marker CD31 and VEGFR2. The Wilcoxon rank sum test and linear mixed-effects model were used for statistical analysis. RESULTS: VEGFR2-targeted US of PDAC showed significantly higher signal intensities (26.8-fold higher; mean intensity ± standard deviation, 6.7 linear arbitrary units [lau] ± 8.5; P < .001) in transgenic mice compared with normal, control pancreata of WT mice (mean intensity, 0.25 lau ± 0.25). The highest VEGFR2-targeted US signal intensities were observed in smaller tumors, less than 3 mm in diameter (30.8-fold higher than control tissue with mean intensity of 7.7 lau ± 9.3 [P < .001]; and 1.7-fold higher than lesions larger than 3 mm in diameter with mean intensity of 4.6 lau ± 5.8 [P < .024]). Ex vivo quantitative VEGFR2 immunofluorescence demonstrated that VEGFR2 expression was significantly higher in pancreatic tumors (P < .001; mean fluorescent intensity, 499.4 arbitrary units [au] ± 179.1) compared with normal pancreas (mean fluorescent intensity, 232.9 au ± 83.7). CONCLUSION: US with clinical-grade VEGFR2-targeted microbubbles allows detection of small foci of PDAC in transgenic mice.
Assuntos
Carcinoma Ductal Pancreático/irrigação sanguínea , Carcinoma Ductal Pancreático/diagnóstico por imagem , Meios de Contraste , Detecção Precoce de Câncer/métodos , Microbolhas , Neovascularização Patológica/diagnóstico por imagem , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/diagnóstico por imagem , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/análise , Animais , Carcinoma Ductal Pancreático/química , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neoplasias Pancreáticas/química , UltrassonografiaRESUMO
Glycosylation plays an important role in epithelial cancers, including pancreatic ductal adenocarcinoma. However, little is known about the glycoproteome of the human pancreas or its alterations associated with pancreatic tumorigenesis. Using quantitative glycoproteomics approach, we investigated protein N-glycosylation in pancreatic tumor tissue in comparison with normal pancreas and chronic pancreatitis tissue. The study lead to the discovery of a roster of glycoproteins with aberrant N-glycosylation level associated with pancreatic cancer, including mucin-5AC (MUC5AC), carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), insulin-like growth factor binding protein (IGFBP3), and galectin-3-binding protein (LGALS3BP). Pathway analysis of cancer-associated aberrant glycoproteins revealed an emerging phenomenon that increased activity of N-glycosylation was implicated in several pancreatic cancer pathways, including TGF-ß, TNF, NF-kappa-B, and TFEB-related lysosomal changes. In addition, the study provided evidence that specific N-glycosylation sites within certain individual proteins can have significantly altered glycosylation occupancy in pancreatic cancer, reflecting the complexity of the molecular mechanisms underlying cancer-associated glycosylation events.
Assuntos
Carcinoma Ductal Pancreático/genética , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/química , Proteínas de Neoplasias/química , Neoplasias Pancreáticas/genética , Pancreatite/genética , Sequência de Aminoácidos , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/química , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antígeno Carcinoembrionário/química , Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Doença Crônica , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Dados de Sequência Molecular , Mucina-5AC/química , Mucina-5AC/genética , Mucina-5AC/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Pancreatite/metabolismo , Pancreatite/patologia , ProteômicaRESUMO
BACKGROUND & AIMS: Early detection of pancreatic ductal adenocarcinoma (PDAC) allows for surgical resection and increases patient survival times. Imaging agents that bind and amplify the signal of neovascular proteins in neoplasms can be detected by ultrasound, enabling accurate detection of small lesions. We searched for new markers of neovasculature in PDAC and assessed their potential for tumor detection by ultrasound molecular imaging. METHODS: Thymocyte differentiation antigen 1 (Thy1) was identified as a specific biomarker of PDAC neovasculature by proteomic analysis. Up-regulation in PDAC was validated by immunohistochemical analysis of pancreatic tissue samples from 28 healthy individuals, 15 with primary chronic pancreatitis tissues, and 196 with PDAC. Binding of Thy1-targeted contrast microbubbles was assessed in cultured cells, in mice with orthotopic PDAC xenograft tumors expressing human Thy1 on the neovasculature, and on the neovasculature of a genetic mouse model of PDAC. RESULTS: Based on immunohistochemical analyses, levels of Thy1 were significantly higher in the vascular of human PDAC than chronic pancreatitis (P = .007) or normal tissue samples (P < .0001). In mice, ultrasound imaging accurately detected human Thy1-positive PDAC xenografts, as well as PDACs that express endogenous Thy1 in genetic mouse models of PDAC. CONCLUSIONS: We have identified and validated Thy1 as a marker of PDAC that can be detected by ultrasound molecular imaging in mice. The development of a specific imaging agent and identification of Thy1 as a new biomarker could aid in the diagnosis of this cancer and management of patients.
Assuntos
Adenocarcinoma/diagnóstico , Biomarcadores Tumorais/análise , Carcinoma Ductal Pancreático/diagnóstico , Imagem Molecular/métodos , Neoplasias Pancreáticas/diagnóstico , Antígenos Thy-1/análise , Adenocarcinoma/química , Adenocarcinoma/diagnóstico por imagem , Animais , Carcinoma Ductal Pancreático/química , Carcinoma Ductal Pancreático/diagnóstico por imagem , Humanos , Imuno-Histoquímica , Camundongos , Transplante de Neoplasias , Pâncreas/química , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/diagnóstico por imagem , Transplante Heterólogo , UltrassonografiaRESUMO
In the early years of my GI fellowship, a healthy 40-year-old man came to my clinic and announced that he was going to die of pancreatic cancer. His brothers, father and uncles had all died of the disease; he felt his fate was inescapable. I asked whether his family members had seen doctors or had any tests. His answer was yes to both. Even so, doctors could not diagnose the pancreatic cancer at early stages. CT scans were always negative. I thought to myself, in order to help this patient-CT scans may not be reliable for early detection. Perhaps other methods of imaging the pancreas might be of more benefit. This patient opened a door that led to a 30-year journey of trying to detect pancreatic cancer at earlier stages when it is curable.
Assuntos
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Masculino , Adulto , Detecção Precoce de Câncer , Tomografia Computadorizada por Raios X , Predisposição Genética para Doença , CarcinomaRESUMO
Pancreatic cancer is a highly lethal disease that is difficult to diagnose and treat. The advances in proteomics technology, especially quantitative proteomics, have stimulated a great interest in applying this technology for pancreatic cancer study. A variety of tissue proteomics approaches have been applied to investigate pancreatic cancer and the associated diseases. These studies were carried out with various goals, aiming to better understand the molecular mechanisms underlying pancreatic tumorigenesis, to improve therapeutic treatment and to identify cancer associated protein signatures, signaling events as well as interactions between cancer cells and tumor microenvironment. Here, we provide an overview on the tissue proteomics studies of pancreatic cancer reported in the past few years in light of discovery and technology development.
Assuntos
Neoplasias Pancreáticas/metabolismo , Proteoma/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Espectrometria de Massas , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/patologia , Proteoma/isolamento & purificação , Proteômica , Transdução de Sinais , Fixação de TecidosRESUMO
Glycosylation is one of the most important and common forms of protein post-translational modification that is involved in many physiological functions and biological pathways. Altered glycosylation has been associated with a variety of diseases, including cancer, inflammatory and degenerative diseases. Glycoproteins are becoming important targets for the development of biomarkers for disease diagnosis, prognosis, and therapeutic response to drugs. The emerging technology of glycoproteomics, which focuses on glycoproteome analysis, is increasingly becoming an important tool for biomarker discovery. An in-depth, comprehensive identification of aberrant glycoproteins, and further, quantitative detection of specific glycosylation abnormalities in a complex environment require a concerted approach drawing from a variety of techniques. This report provides an overview of the recent advances in mass spectrometry based glycoproteomic methods and technology, in the context of biomarker discovery and clinical application.
Assuntos
Glicoproteínas/metabolismo , Espectrometria de Massas/métodos , Proteômica/métodos , Biomarcadores/metabolismo , Glicoproteínas/sangue , Glicoproteínas/química , Glicosilação , Humanos , Proteoma/metabolismoRESUMO
Ulcerative colitis, a chronic inflammatory disease of the colon, is associated with a high risk of colorectal carcinoma that is thought to develop through genomic instability. We considered that the rapid cell turnover and oxidative injury observed in ulcerative colitis might accelerate telomere shortening, thereby increasing the potential of chromosomal ends to fuse, resulting in cycles of chromatin bridge breakage and fusion and chromosomal instability associated with tumor cell progression. Here we have used quantitative fluorescence in situ hybridization to compare chromosomal aberrations and telomere shortening in non-dysplastic mucosa taken from individuals affected by ulcerative colitis, either with (UC progressors) or without (UC non-progressors) dysplasia or cancer. Losses, but not gains, of chromosomal arms and centromeres are highly correlated with telomere shortening. Chromosomal losses are greater and telomeres are shorter in biopsy samples from UC progressors than in those from UC non-progressors or control individuals without ulcerative colitis. A mechanistic link between telomere shortening and chromosomal instability is supported by a higher frequency of anaphase bridges--an intermediate in the breakage and fusion of chromatin bridges--in UC progressors than in UC non-progressors or control individuals. Our study shows that telomere length is correlated with chromosomal instability in a precursor of human cancer.
Assuntos
Aberrações Cromossômicas , Colite Ulcerativa/genética , Telômero/genética , Adulto , Amidas/metabolismo , Feminino , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Hibridização in Situ Fluorescente , Masculino , Compostos Organometálicos , Ácidos Fosfóricos/metabolismo , Células Estromais , Telômero/metabolismoRESUMO
Biomarkers are most frequently proteins that are measured in the blood. Their development largely relies on antibody creation to test the protein candidate performance in blood samples of diseased versus nondiseased patients. The creation of such antibody assays has been a bottleneck in biomarker progress due to the cost, extensive time, and effort required to complete the task. Targeted proteomics is an emerging technology that is playing an increasingly important role to facilitate disease biomarker development. In this study, we applied a SRM-based targeted proteomics platform to directly detect candidate biomarker proteins in plasma to evaluate their clinical utility for pancreatic cancer detection. The characterization of these protein candidates used a clinically well-characterized cohort that included plasma samples from patients with pancreatic cancer, chronic pancreatitis, and healthy age-matched controls. Three of the five candidate proteins, including gelsolin, lumican, and tissue inhibitor of metalloproteinase 1, demonstrated an AUC value greater than 0.75 in distinguishing pancreatic cancer from the controls. In addition, we provide an analysis of the reproducibility, accuracy, and robustness of the SRM-based proteomics platform. This information addresses important technical issues that could aid in the adoption of the targeted proteomics platform for practical clinical utility.
Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/sangue , Neoplasias Pancreáticas/sangue , Proteínas 14-3-3/sangue , Proteínas 14-3-3/química , Sequência de Aminoácidos , Área Sob a Curva , Biomarcadores Tumorais/química , Estudos de Casos e Controles , Proteoglicanas de Sulfatos de Condroitina/sangue , Proteoglicanas de Sulfatos de Condroitina/química , Ensaio de Imunoadsorção Enzimática , Exonucleases/sangue , Exonucleases/química , Exorribonucleases , Gelsolina/sangue , Gelsolina/química , Humanos , Sulfato de Queratano/sangue , Sulfato de Queratano/química , Lumicana , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Mapeamento de Peptídeos , Projetos Piloto , Proteômica , Curva ROC , Inibidor Tecidual de Metaloproteinase-1/sangue , Inibidor Tecidual de Metaloproteinase-1/químicaRESUMO
Chronic inflammation predisposes to a variety of human cancers. Affected tissues slowly accumulate mutations, some of which affect growth regulation and drive successive waves of clonal evolution, whereas a far greater number are functionally neutral and serve only to passively mark expanding clones. Ulcerative colitis (UC) is an inflammatory bowel disease, in which up to 10% of patients eventually develop colon cancer. Here we have mapped mutations in hypermutable intergenic and intronic polyguanine tracts in patients with UC to delineate the extent of clonal expansions associated with carcinogenesis. We genotyped colon biopsies for length altering mutations at 28 different polyguanine markers. In eight patients without neoplasia, we detected only two mutations in a single individual from among 37 total biopsies. In contrast, for 11 UC patients with neoplasia elsewhere in the colon, we identified 63 mutations in 51 nondysplastic biopsies, and every patient possessed at least one mutant clone. A subset of clones were large and extended over many square centimeters of colon. Of these, some occurred as isolated populations in nondysplastic tissue, considerably distant from neoplastic lesions. Other large clones included regions of cancer, suggesting that the tumor arose within a preexisting clonal field. Our results demonstrate that neutral mutations in polyguanine tracts serve as a unique tool for identifying fields of clonal expansions, which may prove clinically useful for distinguishing a subset of UC patients who are at risk for developing cancer.
Assuntos
Colite Ulcerativa/patologia , Neoplasias do Colo/diagnóstico , Proliferação de Células , Células Clonais , Neoplasias do Colo/patologia , Eletroforese em Gel de Ágar , Genótipo , Guanina/metabolismo , Humanos , Modelos Biológicos , Mutação/genéticaRESUMO
OBJECTIVES: Extracellular vesicles (EVs) are lipid bound vesicles secreted by cells into the extracellular environment. Studies have implicated EVs in cell proliferation, epithelial-mesenchymal transition, metastasis, angiogenesis, and mediating the interaction of tumor cells and microenvironment. A systematic characterization of EVs from pancreatic cancer cells and cancer-associated fibroblasts (CAFs) would be valuable for studying the roles of EV proteins in pancreatic tumorigenesis. METHODS: Proteomic and functional analyses were applied to characterize the proteomes of EVs released from 5 pancreatic cancer lines, 2 CAF cell lines, and a normal pancreatic epithelial cell line (HPDE). RESULTS: More than 1400 nonredundant proteins were identified in each EV derived from the cell lines. The majority of the proteins identified in the EVs from the cancer cells, CAFs, and HPDE were detected in all 3 groups, highly enriched in the biological processes of vesicle-mediated transport and exocytosis. Protein networks relevant to pancreatic tumorigenesis, including epithelial-mesenchymal transition, complement, and coagulation components, were significantly enriched in the EVs from cancer cells or CAFs. CONCLUSIONS: These findings support the roles of EVs as a potential mediator in transmitting epithelial-mesenchymal transition signals and complement response in the tumor microenvironment and possibly contributing to coagulation defects related to cancer development.