Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37935058

RESUMO

Genetic elements encoded in nuclear DNA determine the sex of an individual in many animals. In certain bivalve lineages that possess doubly uniparental inheritance (DUI), mitochondrial DNA (mtDNA) has been hypothesized to contribute to sex determination. In these cases, females transmit a female mtDNA to all offspring, while male mtDNA (M mtDNA) is transmitted only from fathers to sons. Because M mtDNA is inherited in the same way as Y chromosomes, it has been hypothesized that mtDNA may be responsible for sex determination. However, the role of mitochondrial and nuclear genes in sex determination has yet to be validated in DUI bivalves. In this study, we used DNA, RNA, and mitochondrial short noncoding RNA (sncRNA) sequencing to explore the role of mitochondrial and nuclear elements in the sexual development pathway of the freshwater mussel Potamilus streckersoni (Bivalvia: Unionida). We found that the M mtDNA sheds a sncRNA partially within a male-specific mitochondrial gene that targets a pathway hypothesized to be involved in female development and mitophagy. RNA-seq confirmed the gene target was significantly upregulated in females, supporting a direct role of mitochondrial sncRNAs in gene silencing. These findings support the hypothesis that M mtDNA inhibits female development. Genome-wide patterns of genetic differentiation and heterozygosity did not support a nuclear sex-determining region, although we cannot reject that nuclear factors are involved with sex determination. Our results provide further evidence that mitochondrial loci contribute to diverse, nonrespiratory functions and additional insights into an unorthodox sex-determining system.


Assuntos
Bivalves , Pequeno RNA não Traduzido , Feminino , Animais , Bivalves/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Genes Mitocondriais
2.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929911

RESUMO

Critical mitochondrial functions, including cellular respiration, rely on frequently interacting components expressed from both the mitochondrial and nuclear genomes. The fitness of eukaryotic organisms depends on a tight collaboration between both genomes. In the face of an elevated rate of evolution in mtDNA, current models predict that the maintenance of mitonuclear compatibility relies on compensatory evolution of the nuclear genome. Mitonuclear interactions would therefore exert an influence on evolutionary trajectories. One prediction from this model is that the same nuclear genome evolving with different mitochondrial haplotypes would follow distinct molecular paths toward higher fitness. To test this prediction, we submitted 1,344 populations derived from 7 mitonuclear genotypes of Saccharomyces cerevisiae to >300 generations of experimental evolution in conditions that either select for a mitochondrial function or do not strictly require respiration for survival. Performing high-throughput phenotyping and whole-genome sequencing on independently evolved individuals, we identified numerous examples of gene-level evolutionary convergence among populations with the same mitonuclear background. Phenotypic and genotypic data on strains derived from this evolution experiment identify the nuclear genome and the environment as the main determinants of evolutionary divergence, but also show a modulating role for the mitochondrial genome exerted both directly and via interactions with the two other components. We finally recapitulated a subset of prominent loss-of-function alleles in the ancestral backgrounds and confirmed a generalized pattern of mitonuclear-specific and highly epistatic fitness effects. Together, these results demonstrate how mitonuclear interactions can dictate evolutionary divergence of populations with identical starting nuclear genotypes.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , DNA Mitocondrial/genética , Mitocôndrias/genética , Eucariotos/genética , Genótipo , Núcleo Celular/genética
3.
Mol Biol Rep ; 51(1): 298, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38341808

RESUMO

BACKGROUND: Brachiopods are a phylum of marine invertebrates with over 10,000 fossil species. Today, there are fewer than 500 extant species assigned to the class Articulata or Inarticulata and for which knowledge of evolutionary genetics and genomics is still poor. Until now, complete mitogenome sequences of two inarticulate species and four articulate species were available. METHODS AND RESULTS: The complete mitogenome of the inarticulate brachiopod species Lingula reevii (20,778 bp) was obtained by using next generation sequencing. It contains 12 protein-coding genes (the annotation of atp8 is unsure), two ribosomal RNA genes, 26 transfer RNA genes, and one supernumerary ORF that is also conserved in the inarticulate species Lingula anatina. It is hypothesized that this ORF could represent a Lingula-specific mtORFan gene (without obvious homology to other genes). Comparative mitogenomics indicate the mitochondrial gene order of L. reevii is unique among brachiopods, and that compared to articulate species, inarticulate species exhibit massive mitogenome rearrangements, deviant ATP8 protein sequences and supernumerary ORFs, possibly representing species- or lineage-specific mtORFan genes. CONCLUSION: The results of this study enrich genetics knowledge of extant brachiopods, which may eventually help to test hypotheses about their decline.


Assuntos
Genoma Mitocondrial , Invertebrados , Animais , Invertebrados/genética , Evolução Biológica , Genômica , Genes Mitocondriais , Sequência de Aminoácidos , Genoma Mitocondrial/genética , Filogenia
4.
Bioessays ; 44(4): e2100283, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170770

RESUMO

Animal and plant species exhibit an astonishing diversity of sexual systems, including environmental and genetic determinants of sex, with the latter including genetic material in the mitochondrial genome. In several hermaphroditic plants for example, sex is determined by an interaction between mitochondrial cytoplasmic male sterility (CMS) genes and nuclear restorer genes. Specifically, CMS involves aberrant mitochondrial genes that prevent pollen development and specific nuclear genes that restore it, leading to a mixture of female (male-sterile) and hermaphroditic individuals in the population (gynodioecy). Such a mitochondrial-nuclear sex determination system is thought to be rare outside plants. Here, we present one possible case of CMS in animals. We hypothesize that the only exception to the strict maternal mtDNA inheritance in animals, the doubly uniparental inheritance (DUI) system in bivalves, might have originated as a mitochondrial-nuclear sex-determination system. We document and explore similarities that exist between DUI and CMS, and we propose various ways to test our hypothesis.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , Animais , DNA Mitocondrial/genética , Feminino , Genes Mitocondriais/genética , Genoma Mitocondrial/genética , Padrões de Herança/genética , Infertilidade das Plantas
5.
Artigo em Inglês | MEDLINE | ID: mdl-38346534

RESUMO

In a recent mechanistic study, octopamine was shown to promote proton transport over the branchial epithelium in green crabs, Carcinus maenas. Here, we follow up on this finding by investigating the involvement of octopamine in an environmental and physiological context that challenges acid-base homeostasis, the response to short-term high pCO2 exposure (400 Pa) in a brackish water environment. We show that hyperregulating green crabs experienced a respiratory acidosis as early as 6 h of exposure to hypercapnia, with a rise in hemolymph pCO2 accompanied by a simultaneous drop of hemolymph pH. The slightly delayed increase in hemolymph HCO3- observed after 24 h helped to restore hemolymph pH to initial values by 48 h. Circulating levels of the biogenic amine octopamine were significantly higher in short-term high pCO2 exposed crabs compared to control crabs after 48 h. Whole animal metabolic rates, intracellular levels of octopamine and cAMP, as well as branchial mitochondrial enzyme activities for complex I + III and citrate synthase were unchanged in posterior gill #7 after 48 h of hypercapnia. However, application of octopamine in gill respirometry experiments suppressed branchial metabolic rate in posterior gills of short-term high pCO2 exposed animals. Furthermore, branchial enzyme activity of cytochrome C oxidase decreased in high pCO2 exposed crabs after 48 h. Our results indicate that hyperregulating green crabs are capable of quickly counteracting a hypercapnia-induced respiratory acidosis. The role of octopamine in the acclimation of green crabs to short-term hypercapnia seems to entail the alteration of branchial metabolic pathways, possibly targeting mitochondrial cytochrome C in the gill. Our findings help advancing our current limited understanding of endocrine components in hypercapnia acclimation. SUMMARY STATEMENT: Acid-base compensation upon short-term high pCO2 exposure in hyperregulating green crabs started after 6 h and was accomplished by 48 h with the involvement of the biogenic amine octopamine, accumulation of hemolymph HCO3-, and regulation of mitochondrial complex IV (cytochrome C oxidase).


Assuntos
Acidose Respiratória , Braquiúros , Decápodes , Animais , Hipercapnia/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Octopamina/metabolismo , Acidose Respiratória/metabolismo , Braquiúros/fisiologia , Brânquias/metabolismo
6.
BMC Biol ; 21(1): 111, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37198654

RESUMO

BACKGROUND: Mitochondria have a central role in cellular functions, aging, and in certain diseases. They possess their own genome, a vestige of their bacterial ancestor. Over the course of evolution, most of the genes of the ancestor have been lost or transferred to the nucleus. In humans, the mtDNA is a very small circular molecule with a functional repertoire limited to only 37 genes. Its extremely compact nature with genes arranged one after the other and separated by short non-coding regions suggests that there is little room for evolutionary novelties. This is radically different from bacterial genomes, which are also circular but much larger, and in which we can find genes inside other genes. These sequences, different from the reference coding sequences, are called alternatives open reading frames or altORFs, and they are involved in key biological functions. However, whether altORFs exist in mitochondrial protein-coding genes or elsewhere in the human mitogenome has not been fully addressed. RESULTS: We found a downstream alternative ATG initiation codon in the + 3 reading frame of the human mitochondrial nd4 gene. This newly characterized altORF encodes a 99-amino-acid-long polypeptide, MTALTND4, which is conserved in primates. Our custom antibody, but not the pre-immune serum, was able to immunoprecipitate MTALTND4 from HeLa cell lysates, confirming the existence of an endogenous MTALTND4 peptide. The protein is localized in mitochondria and cytoplasm and is also found in the plasma, and it impacts cell and mitochondrial physiology. CONCLUSIONS: Many human mitochondrial translated ORFs might have so far gone unnoticed. By ignoring mtaltORFs, we have underestimated the coding potential of the mitogenome. Alternative mitochondrial peptides such as MTALTND4 may offer a new framework for the investigation of mitochondrial functions and diseases.


Assuntos
Genoma Mitocondrial , NADH Desidrogenase , Humanos , DNA Mitocondrial/genética , Células HeLa , Mitocôndrias/genética , Fases de Leitura Aberta , Peptídeos , NADH Desidrogenase/genética
7.
Biol Lett ; 18(6): 20220122, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35673874

RESUMO

Cytochrome c oxidase subunit II (COX2) is one of the three mitochondrially encoded proteins of the complex IV of the respiratory chain that catalyses the reduction of oxygen to water. The cox2 gene spans about 690 base pairs in most animal species and produces a protein composed of approximately 230 amino acids. We discovered an extreme departure from this pattern in the male-transmitted mitogenome of the bivalve Scrobicularia plana with doubly uniparental inheritance (DUI) of mitochondrial DNA (mtDNA), which possesses an important in-frame insertion of approximately 4.8 kb in its cox2 gene. This feature-an enlarged male cox2 gene-is found in many species with DUI; the COX2 protein can be up to 420 amino acids long. Through RT-PCRs, immunoassays and comparative genetics, the evolution and functionality of this insertion in S. plana were characterized. The in-frame insertion is conserved among individuals from different populations and bears the signature of purifying selection seemingly indicating maintenance of functionality. Its transcription and translation were confirmed: this gene produces a polypeptide of 1892 amino acids, making it the largest metazoan COX2 protein known to date. We hypothesize that these extreme modifications in the COX2 protein affect the metabolism of mitochondria containing the male-transmitted mtDNA in Scrobicularia plana.


Assuntos
Bivalves , Genoma Mitocondrial , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Bivalves/genética , Bivalves/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , DNA Mitocondrial/genética , Masculino , Proteínas Mitocondriais/genética
8.
Proc Biol Sci ; 288(1957): 20211585, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34403637

RESUMO

Doubly uniparental inheritance (DUI) represents a notable exception to the general rule of strict maternal inheritance (SMI) of mitochondria in metazoans. This system entails the coexistence of two mitochondrial lineages (F- and M-type) transmitted separately through oocytes and sperm, thence providing an unprecedented opportunity for the mitochondrial genome to evolve adaptively for male functions. In this study, we explored the impact of a sex-specific mitochondrial evolution upon gamete bioenergetics of DUI and SMI bivalve species, comparing the activity of key enzymes of glycolysis, fermentation, fatty acid metabolism, tricarboxylic acid cycle, oxidative phosphorylation and antioxidant metabolism. Our findings suggest reorganized bioenergetic pathways in DUI gametes compared to SMI gametes. This generally results in a decreased enzymatic capacity in DUI sperm with respect to DUI oocytes, a limitation especially prominent at the terminus of the electron transport system. This bioenergetic remodelling fits a reproductive strategy that does not require high energy input and could potentially link with the preservation of the paternally transmitted mitochondrial genome in DUI species. Whether this phenotype may derive from positive or relaxed selection acting on DUI sperm is still uncertain.


Assuntos
Bivalves , Genoma Mitocondrial , Animais , Bivalves/genética , DNA Mitocondrial/genética , Feminino , Masculino , Mitocôndrias/genética , Fosforilação Oxidativa
9.
J Exp Biol ; 224(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34401903

RESUMO

Frequent heat waves caused by climate change can give rise to physiological stress in many animals, particularly in sessile ectotherms such as bivalves. Most studies characterizing thermal stress in bivalves focus on evaluating the responses to a single stress event. This does not accurately reflect the reality faced by bivalves, which are often subject to intermittent heat waves. Here, we investigated the effect of intermittent heat stress on mitochondrial functions of the eastern oyster, Crassostrea virginica, which play a key role in setting the thermal tolerance of ectotherms. Specifically, we measured changes in mitochondrial oxygen consumption and H2O2 emission rates before, during and after intermittent 7.5°C heat shocks in oysters acclimated to 15 and 22.5°C. Our results showed that oxygen consumption was impaired following the first heat shock at both acclimation temperatures. After the second heat shock, results for oysters acclimated to 15°C indicated a return to normal. However, oysters acclimated to 22.5°C struggled more with the compounding effects of intermittent heat shocks as denoted by an increased contribution of FAD-linked substrates to mitochondrial respiration as well as high levels of H2O2 emission rates. However, both acclimated populations showed signs of potential recovery 10 days after the second heat shock, reflecting a surprising resilience to heat waves by C. virginica. Thus, this study highlights the important role of acclimation in the oyster's capacity to weather intermittent heat shock.


Assuntos
Crassostrea , Animais , Cádmio , Resposta ao Choque Térmico , Peróxido de Hidrogênio , Mitocôndrias
10.
J Exp Biol ; 223(Pt 2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31915201

RESUMO

Climate change is impacting many, if not all, forms of life. Increases in extreme temperature fluctuations and average temperatures can cause stress, particularly in aquatic sessile ectotherms such as freshwater mussels. However, some species seem to thrive more than others in face of temperature-related stressors. Thermal tolerance may, for example, explain the success of invasive species. It is also known that mitochondria can play a key role in setting an ectothermic species' thermal tolerance. In this study, we aimed to characterize the mitochondrial thermo-tolerance in invasive and endemic freshwater mussels. With the use of high-resolution respirometry, we analyzed the mitochondrial respiration of two freshwater bivalve species exposed to a broad range of temperatures. We noticed that the invasive dreissenid Dreissena bugensis possessed a less thermo-tolerant mitochondrial metabolism than the endemic unionid Elliptio complanata This lack of tolerance was linked with a more noticeable aerobic metabolic depression at elevated temperatures. This decrease in mitochondrial metabolic activity was also linked with an increase in leak oxygen consumption as well as a stable maintenance of the activity of cytochrome c oxidase in both species. These findings may be associated both with the species' life history characteristics, as D. bugensis is more adapted to unstable habitats, in which selection pressures for resistance adaptations are reduced. Our findings add to the growing body of literature characterizing the mitochondrial metabolism of many aquatic ectotherms in our changing world.


Assuntos
Bivalves/fisiologia , Espécies Introduzidas , Mitocôndrias/metabolismo , Animais , Bivalves/metabolismo , Ecossistema , Complexo IV da Cadeia de Transporte de Elétrons , Consumo de Oxigênio/fisiologia
11.
Heredity (Edinb) ; 124(1): 182-196, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201385

RESUMO

Using a new fossil-calibrated mitogenome-based approach, we identified macroevolutionary shifts in mitochondrial gene order among the freshwater mussels (Unionoidea). We show that the early Mesozoic divergence of the two Unionoidea clades, Margaritiferidae and Unionidae, was accompanied by a synchronous split in the gene arrangement in the female mitogenome (i.e., gene orders MF1 and UF1). Our results suggest that this macroevolutionary jump was completed within a relatively short time interval (95% HPD 201-226 Ma) that coincided with the Triassic-Jurassic mass extinction. Both gene orders have persisted within these clades for ~200 Ma. The monophyly of the so-called "problematic" Gonideinae taxa was supported by all the inferred phylogenies in this study using, for the first time, the M- and F-type mitogenomes either singly or combined. Within Gonideinae, two additional splits in the gene order (UF1 to UF2, UF2 to UF3) occurred in the Mesozoic and have persisted for ~150 and ~100 Ma, respectively. Finally, the mitogenomic results suggest ancient connections between freshwater basins of East Asia and Europe near the Cretaceous-Paleogene boundary, probably via a continuous paleo-river system or along the Tethys coastal line, which are well supported by at least three independent but almost synchronous divergence events.


Assuntos
Evolução Biológica , Genoma Mitocondrial , Filogenia , Unionidae/classificação , Animais , Feminino , Fósseis , Água Doce , Ordem dos Genes , Masculino , Unionidae/genética
12.
BMC Evol Biol ; 19(1): 229, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856711

RESUMO

BACKGROUND: Supernumerary ORFan genes (i.e., open reading frames without obvious homology to other genes) are present in the mitochondrial genomes of gonochoric freshwater mussels (Bivalvia: Unionida) showing doubly uniparental inheritance (DUI) of mitochondria. DUI is a system in which distinct female-transmitted and male-transmitted mitotypes coexist in a single species. In families Unionidae and Margaritiferidae, the transition from dioecy to hermaphroditism and the loss of DUI appear to be linked, and this event seems to affect the integrity of the ORFan genes. These observations led to the hypothesis that the ORFans have a role in DUI and/or sex determination. Complete mitochondrial genome sequences are however scarce for most families of freshwater mussels, therefore hindering a clear localization of DUI in the various lineages and a comprehensive understanding of the influence of the ORFans on DUI and sexual systems. Therefore, we sequenced and characterized eleven new mitogenomes from poorly sampled freshwater mussel families to gather information on the evolution and variability of the ORFan genes and their protein products. RESULTS: We obtained ten complete plus one almost complete mitogenome sequence from ten representative species (gonochoric and hermaphroditic) of families Margaritiferidae, Hyriidae, Mulleriidae, and Iridinidae. ORFan genes are present only in DUI species from Margaritiferidae and Hyriidae, while non-DUI species from Hyriidae, Iridinidae, and Mulleriidae lack them completely, independently of their sexual system. Comparisons among the proteins translated from the newly characterized ORFans and already known ones provide evidence of conserved structures, as well as family-specific features. CONCLUSIONS: The ORFan proteins show a comparable organization of secondary structures among different families of freshwater mussels, which supports a conserved physiological role, but also have distinctive family-specific features. Given this latter observation and the fact that the ORFans can be either highly mutated or completely absent in species that secondarily lost DUI depending on their respective family, we hypothesize that some aspects of the connection among ORFans, sexual systems, and DUI may differ in the various lineages of unionids.


Assuntos
Bivalves/classificação , Bivalves/genética , Genoma Mitocondrial , Animais , Bivalves/citologia , DNA Mitocondrial/genética , Água Doce , Proteínas Mitocondriais/genética , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA
13.
Proc Biol Sci ; 286(1896): 20182708, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30963924

RESUMO

Mitochondria produce energy through oxidative phosphorylation (OXPHOS), which depends on the expression of both nuclear and mitochondrial DNA (mtDNA). In metazoans, a striking exception from strictly maternal inheritance of mitochondria is doubly uniparental inheritance (DUI). This unique system involves the maintenance of two highly divergent mtDNAs (F- and M-type, 8-40% of nucleotide divergence) associated with gametes, and occasionally coexisting in somatic tissues. To address whether metabolic differences underlie this condition, we characterized the OXPHOS activity of oocytes, spermatozoa, and gills of different species through respirometry. DUI species express different gender-linked mitochondrial phenotypes in gametes and partly in somatic tissues. The M-phenotype is specific to sperm and entails (i) low coupled/uncoupled respiration rates, (ii) a limitation by the phosphorylation system, and (iii) a null excess capacity of the final oxidases, supporting a strong control over the upstream complexes. To our knowledge, this is the first example of a phenotype resulting from direct selection on sperm mitochondria. This metabolic remodelling suggests an adaptive value of mtDNA variations and we propose that bearing sex-linked mitochondria could assure the energetic requirements of different gametes, potentially linking male-energetic adaptation, mitotype preservation and inheritance, as well as resistance to both heteroplasmy and ageing.


Assuntos
Bivalves/genética , Bivalves/metabolismo , DNA Mitocondrial/genética , Hereditariedade , Fosforilação Oxidativa , Animais , Feminino , Brânquias/metabolismo , Masculino , Oócitos/metabolismo , Espermatozoides/metabolismo
14.
Anesthesiology ; 131(2): 305-314, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31166244

RESUMO

BACKGROUND: Health care-associated hepatitis C virus outbreaks from contaminated medication vials continue to be reported even though most practitioners deny reusing needles or syringes. The hypothesis was that when caring for hepatitis C virus-infected patients, healthcare providers may inadvertently contaminate the medication vial diaphragm and that subsequent access with sterile needles and syringes can transfer hepatitis C virus into the medication, where it remains stable in sufficient quantities to infect subsequent patients. METHODS: A parallel-arm lab study (n = 9) was performed in which contamination of medication vials in healthcare settings was simulated using cell culture-derived hepatitis C virus. First, surface-contaminated vials were accessed with sterile needles and syringes, and then hepatitis C virus contamination was assessed in cell culture. Second, after contaminating several medications with hepatitis C virus, viral infectivity over time was assessed. Last, surface-contaminated vial diaphragms were disinfected with 70% isopropyl alcohol to determine whether disinfection of the vial surface was sufficient to eliminate hepatitis C virus infectivity. RESULTS: Contamination of medication vials with hepatitis C virus and subsequent access with sterile needles and syringes resulted in contamination of the vial contents in sufficient quantities to initiate an infection in cell culture. Hepatitis C virus remained viable for several days in several commonly used medications. Finally, a single or 2- to 3-s wipe of the vial diaphragm with 70% isopropyl alcohol was not sufficient to eliminate hepatitis C virus infectivity. CONCLUSIONS: Hepatitis C virus can be transferred into commonly used medications when using sterile single-use needles and syringes where it remains viable for several days. Furthermore, cleaning the vial diaphragm with 70% isopropyl alcohol is not sufficient to eliminate the risk of hepatitis C virus infectivity. This highlights the potential risks associated with sharing medications between patients.


Assuntos
Embalagem de Medicamentos , Contaminação de Equipamentos , Hepacivirus/crescimento & desenvolvimento , Agulhas/microbiologia , Seringas/microbiologia , Células Cultivadas
15.
Cryobiology ; 88: 106-109, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31028719

RESUMO

In non-thermoregulating and sessile organisms, such as the imperiled freshwater mussels (Bivalvia: Unionida), thermal sensitivity of mitochondria is a key factor for survival to global warming. Given the protected status of many unionids, non-destructive biopsies and subsequent cryopreservation are advisable procedures for further investigation of their mitochondrial function. To address whether long-term cryopreservation affects mitochondria in freshwater mussels, the mitochondrial respiration in permeabilized somatic cells of Elliptio complanata has been fully characterized through high-resolution respirometry. Our results indicate that cryopreservation does affect the absolute rate of respiration, which significantly decrease compared to fresh tissues, independently of substrates combination, respiratory state and normalizing factor. However, the negative impact is not reflected at the level of flux control ratios, suggesting that, even in front of a sharp decline in the aerobic capacity, cryopreserved tissues preserve the mitochondrial organization and could be thus employed for the qualitative analysis of mitochondrial function.


Assuntos
Bivalves/metabolismo , Respiração Celular/fisiologia , Criopreservação/métodos , Mitocôndrias/metabolismo , Animais , Água Doce
16.
Mol Phylogenet Evol ; 120: 233-239, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29258879

RESUMO

The mitochondrial genome architecture of polyplacophorans has been usually regarded as being very ancient in comparison to all mollusks. However, even if some complete chiton mtDNAs have been recently sequenced, thorough studies of their evolution are lacking. To further expand the set of complete chiton mtDNAs and perform such analysis, we sequenced the mitochondrial genome of the Eastern beaded chiton Chaetopleura apiculata (Chaetopleuridae) using next-generation sequencing. With mitochondrial sequences from all available chiton mtDNAs, we also built a phylogeny on which we reconstructed the evolution of gene arrangement in this class. The arrangement of C. apiculata proved to be the most primitive known so far for polyplacophorans. Comparing this gene order to those of other molluscan classes, we found that it most probably is the original gene order of the last common ancestor to all extant Mollusca. The ancient mitochondrial genome organization of C. apiculata is an important information that may help reconstructing the phylogeny of Mollusca and their relationship with other lophotrochozoans.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Poliplacóforos/genética , Animais , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Ordem dos Genes , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Poliplacóforos/classificação , Análise de Sequência de DNA
18.
Can J Anaesth ; 65(10): 1100-1109, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29868942

RESUMO

PURPOSE: Recommendations for safe medication injection practices to eliminate the risk of patient-to-patient transmission of blood-borne infections have been in place for many years. The purpose of our study was to evaluate the medication administration practices of Canadian anesthesiologists relative to current safe practice guidelines. METHODS: An anonymous 17-question online survey was sent to all members of the Canadian Anesthesiologists' Society (CAS) via the membership email list. Data pertaining to respondent demographics, practice characteristics, and medication preparation and administration practices were collected and analyzed descriptively using frequencies and percentages as well as Fisher's exact tests followed by post hoc multiple comparisons. RESULTS: Of the 2,656 CAS members, 546 (21%) responded. The practice of reusing needles (2%) and/or syringes (7%) between patients is reported by only a minority of practitioners; however, sharing a medication vial between more than one patient using new needles and syringes is still widely practiced with 83% doing this sometimes or routinely. The main reasons for sharing medications include the desire to reduce medication waste and the associated costs. CONCLUSION: Sharing medication vials between multiple patients is common practice in Canada, with new needles and syringes used for each patient. Unfortunately, a small minority of anesthesiologists continue to reuse needles and/or syringes between patients, and this may pose a significant risk of patient-to-patient infection transmission.


Assuntos
Anestésicos/administração & dosagem , Composição de Medicamentos , Adulto , Idoso , Anestesiologistas , Canadá , Estudos Transversais , Feminino , Humanos , Injeções , Masculino , Pessoa de Meia-Idade , Uso Comum de Agulhas e Seringas , Sociedades Médicas
19.
Trends Genet ; 30(12): 555-64, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25263762

RESUMO

Recent data from mitochondrial genomics and proteomics research demonstrate the existence of several atypical mitochondrial protein-coding genes (other than the standard set of 13) and the involvement of mtDNA-encoded proteins in functions other than energy production in several animal species including humans. These results are of considerable importance for evolutionary and cellular biology because they indicate that animal mtDNAs have a larger functional repertoire than previously believed. This review summarizes recent studies on animal species with a non-standard mitochondrial functional repertoire and discusses how these genetic novelties represent promising candidates for studying the role of the mitochondrial genome in speciation.


Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Genoma Mitocondrial/genética , Proteínas Mitocondriais/genética , Animais , Feminino , Humanos , Padrões de Herança , Masculino , Proteínas Mitocondriais/metabolismo , Modelos Genéticos
20.
BMC Genomics ; 17: 597, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27507266

RESUMO

BACKGROUND: Many species of bivalves exhibit a unique system of mtDNA transmission named Doubly Uniparental Inheritance (DUI). Under this system, species have two distinct, sex-linked mitochondrial genomes: the M-type mtDNA, which is transmitted by males to male offspring and found in spermatozoa, and the F-type mtDNA, which is transmitted by females to all offspring, and found in all tissues of females and in somatic tissues of males. Bivalves with DUI also have sex-specific mitochondrial ORFan genes, (M-orf in the M mtDNA, F-orf in the F mtDNA), which are open reading frames having no detectable homology and no known function. DUI ORFan proteins have previously been characterized in silico in a taxonomically broad array of bivalves including four mytiloid, one veneroid and one unionoid species. However, the large evolutionary distance among these taxa prevented a meaningful comparison of ORFan properties among these divergent lineages. The present in silico study focuses on a suite of more closely-related Unionoid freshwater mussel species to provide more reliably interpretable information on patterns of conservation and properties of DUI ORFans. Unionoid species typically have separate sexes, but hermaphroditism also occurs, and hermaphroditic species lack the M-type mtDNA and possess a highly mutated version of the F-orf in their maternally transmitted mtDNA (named H-orf in these taxa). In this study, H-orfs and their respective proteins are analysed for the first time. RESULTS: Despite a rapid rate of evolution, strong structural and functional similarities were found for M-ORF proteins compared among species, and among the F-ORF and H-ORF proteins across the studied species. In silico analyses suggest that M-ORFs have a role in transport and cellular processes such as signalling, cell cycle and division, and cytoskeleton organisation, and that F-ORFs may be involved in cellular traffic and transport, and in immune response. H-ORFs appear to be structural glycoproteins, which may be involved in signalling, transport and transcription. Our results also support either a viral or a mitochondrial origin for the ORFans. CONCLUSIONS: Our findings reveal striking structural and functional similarities among proteins encoded by mitochondrial ORFans in freshwater mussels, and strongly support a role for these genes in the DUI mechanism. Our analyses also support the possibility of DUI systems with elements of different sources/origins and different mechanisms of action in the distantly-related DUI taxa. Parallel situations to the novel mitochondrially-encoded functions of freshwater mussel ORFans present in some other eukaryotes are also discussed.


Assuntos
Bivalves/genética , Genes Mitocondriais , Genoma Mitocondrial , Genômica , Fases de Leitura Aberta , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Bivalves/classificação , Biologia Computacional/métodos , Simulação por Computador , DNA Mitocondrial , Evolução Molecular , Água Doce , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA