Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Environ Microbiol ; 20(3): 958-970, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29235707

RESUMO

Although a broad diversity of eukaryotic and bacterial taxa reside on rock surfaces where they can influence the weathering of rocks and minerals, these communities and their contributions to mineral weathering remain poorly resolved. To build a more comprehensive understanding of the diversity, ecology and potential functional attributes of microbial communities living on rock, we sampled 149 tombstones across three continents and analysed their bacterial and eukaryotic communities via marker gene and shotgun metagenomic sequencing. We found that geographic location and climate were important factors structuring the composition of these communities. Moreover, the tombstone-associated microbial communities varied as a function of rock type, with granite and limestone tombstones from the same cemeteries harbouring taxonomically distinct microbial communities. The granite and limestone-associated communities also had distinct functional attributes, with granite-associated bacteria having more genes linked to acid tolerance and chemotaxis, while bacteria on limestone were more likely to be lichen associated and have genes involved in photosynthesis and radiation resistance. Together these results indicate that rock-dwelling microbes exhibit adaptations to survive the stresses of the rock surface, differ based on location, climate and rock type, and seem pre-disposed to different ecological strategies (symbiotic versus free-living lifestyles) depending on the rock type.


Assuntos
Bactérias/classificação , Carbonato de Cálcio , Metagenômica , Microbiota , Dióxido de Silício , Bactérias/genética , Biodiversidade
2.
J Struct Biol ; 200(3): 343-359, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28842338

RESUMO

Bacteriophages of nitrogen-fixing rhizobial bacteria are revealing a wealth of novel structures, diverse enzyme combinations and genomic features. Here we report the cryo-EM structure of the phage capsid at 4.9-5.7Å-resolution, the phage particle proteome, and the genome of the Sinorhizobium meliloti-infecting Podovirus ΦM5. This is the first structure of a phage with a capsid and capsid-associated structural proteins related to those of the LUZ24-like viruses that infect Pseudomonas aeruginosa. Like many other Podoviruses, ΦM5 is a T=7 icosahedron with a smooth capsid and short, relatively featureless tail. Nonetheless, this group is phylogenetically quite distinct from Podoviruses of the well-characterized T7, P22, and epsilon 15 supergroups. Structurally, a distinct bridge of density that appears unique to ΦM5 reaches down the body of the coat protein to the extended loop that interacts with the next monomer in a hexamer, perhaps stabilizing the mature capsid. Further, the predicted tail fibers of ΦM5 are quite different from those of enteric bacteria phages, but have domains in common with other rhizophages. Genomically, ΦM5 is highly mosaic. The ΦM5 genome is 44,005bp with 357bp direct terminal repeats (DTRs) and 58 unique ORFs. Surprisingly, the capsid structural module, the tail module, the DNA-packaging terminase, the DNA replication module and the integrase each appear to be from a different lineage. One of the most unusual features of ΦM5 is its terminase whose large subunit is quite different from previously-described short-DTR-generating packaging machines and does not fit into any of the established phylogenetic groups.


Assuntos
Bacteriófagos/química , Bacteriófagos/genética , Capsídeo/química , Genoma Viral , Sinorhizobium meliloti/virologia , Bacteriófagos/metabolismo , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Endodesoxirribonucleases/genética , Genes Bacterianos , Processamento de Imagem Assistida por Computador/métodos , Fases de Leitura Aberta , Filogenia , Proteínas Virais/metabolismo , Vírion
3.
J Virol ; 89(21): 10945-58, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26311868

RESUMO

UNLABELLED: Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE: Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long, contractile tail through which the DNA is delivered to host cells. This phylogenetic and structural study of S. meliloti-infecting T4 superfamily phage ΦM9 provides new insight into the diversity of this family. The comparison of structure-related genes in both ΦM9 and S. meliloti-infecting T4 superfamily phage ΦM12, which comes from a completely different lineage of these phages, allows the identification of host infection-related factors.


Assuntos
Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Capsídeo/fisiologia , Genoma Viral/genética , Modelos Moleculares , Sinorhizobium meliloti/virologia , Bacteriófagos/química , Bacteriófagos/classificação , Sequência de Bases , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Análise de Sequência de DNA/métodos , Especificidade da Espécie
4.
Environ Sci Technol ; 49(5): 2675-84, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25643125

RESUMO

Flood-damaged homes typically have elevated microbial loads, and their occupants have an increased incidence of allergies, asthma, and other respiratory ailments, yet the microbial communities in these homes remain under-studied. Using culture-independent approaches, we characterized bacterial and fungal communities in homes in Boulder, CO, USA 2-3 months after the historic September, 2013 flooding event. We collected passive air samples from basements in 50 homes (36 flood-damaged, 14 non-flooded), and we sequenced the bacterial 16S rRNA gene (V4-V5 region) and the fungal ITS1 region from these samples for community analyses. Quantitative PCR was used to estimate the abundances of bacteria and fungi in the passive air samples. Results indicate significant differences in bacterial and fungal community composition between flooded and non-flooded homes. Fungal abundances were estimated to be three times higher in flooded, relative to non-flooded homes, but there were no significant differences in bacterial abundances. Penicillium (fungi) and Pseudomonadaceae and Enterobacteriaceae (bacteria) were among the most abundant taxa in flooded homes. Our results suggest that bacterial and fungal communities continue to be affected by flooding, even after relative humidity has returned to baseline levels and remediation has removed any visible evidence of flood damage.


Assuntos
Microbiologia do Ar , Bactérias/crescimento & desenvolvimento , Desastres , Inundações , Fungos/crescimento & desenvolvimento , Bactérias/genética , Colorado , Fungos/genética , Humanos , RNA Bacteriano/genética , RNA Fúngico/genética , RNA Ribossômico 16S/genética
5.
Mol Plant Microbe Interact ; 26(9): 1089-105, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23656330

RESUMO

The acidic polysaccharide succinoglycan produced by the nitrogen-fixing rhizobial symbiont Sinorhizobium meliloti 1021 is required for this bacterium to invade the host plant Medicago truncatula and to efficiently invade the host plant M. sativa (alfalfa). The ß-glucanase enzyme encoded by exoK has previously been demonstrated to cleave succinoglycan and participate in producing the low molecular weight form of this polysaccharide. Here, we show that exoK is required for efficient S. meliloti invasion of both M. truncatula and alfalfa. Deletion mutants of exoK have a substantial reduction in symbiotic productivity on both of these plant hosts. Insertion mutants of exoK have an even less productive symbiosis than the deletion mutants with the host M. truncatula that is caused by a secondary effect of the insertion itself, and may be due to a polar effect on the expression of the downstream exoLAMON genes.


Assuntos
Glicosídeo Hidrolases/genética , Medicago sativa/microbiologia , Medicago truncatula/microbiologia , Sinorhizobium meliloti/enzimologia , Simbiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Teste de Complementação Genética , Glicosídeo Hidrolases/metabolismo , Mutação , Fixação de Nitrogênio , Fenótipo , Nodulação , Raízes de Plantas/microbiologia , Brotos de Planta/microbiologia , Polissacarídeos Bacterianos/metabolismo , Proteínas Recombinantes de Fusão , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiologia
6.
BMC Microbiol ; 12: 74, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22587634

RESUMO

BACKGROUND: We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy's Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. RESULTS: Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a "SodM-like" (superoxide dismutase-like) protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon) identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. CONCLUSIONS: Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process.


Assuntos
Proteínas de Bactérias/biossíntese , Perfilação da Expressão Gênica , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/fisiologia , Simbiose , Proteínas de Bactérias/genética , Técnicas de Inativação de Genes , Medicago sativa/microbiologia , Medicago sativa/fisiologia , Mutagênese Insercional , Nodulação , Estrutura Terciária de Proteína , Sinorhizobium meliloti/genética , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética
7.
ISME J ; 16(4): 1065-1073, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34824398

RESUMO

Rapid bacterial growth depends on the speed at which ribosomes can translate mRNA into proteins. mRNAs that encode successive stretches of proline can cause ribosomes to stall, substantially reducing translation speed. Such stalling is especially detrimental for species that must grow and divide rapidly. Here, we focus on di-prolyl motifs (XXPPX) and ask whether their prevalence varies with growth rate. To find out we conducted a broad survey of such motifs in >3000 bacterial genomes across 35 phyla. Indeed, fast-growing species encode fewer motifs than slow-growing species, especially in highly expressed proteins. We also found many di-prolyl motifs within thermophiles, where prolines can help maintain proteome stability. Moreover, bacteria with complex, multicellular lifecycles also encode many di-prolyl motifs. This is especially evident in the slow-growing phylum Myxococcota. Bacteria in this phylum encode many serine-threonine kinases, and many di-prolyl motifs at potential phosphorylation sites within these kinases. Serine-threonine kinases are involved in cell signaling and help regulate developmental processes linked to multicellularity in the Myxococcota. Altogether, our observations suggest that weakened selection on translational rate, whether due to slow or thermophilic growth, may allow di-prolyl motifs to take on new roles in biological processes that are unrelated to translational rate.


Assuntos
Prolina , Ribossomos , Bactérias/genética , Bactérias/metabolismo , Prolina/metabolismo , Proteínas Serina-Treonina Quinases , Ribossomos/genética
8.
ISME J ; 14(2): 597-608, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31712737

RESUMO

Ribosomes are essential to cellular life and the genes for their RNA components are the most conserved and transcribed genes in bacteria and archaea. Ribosomal RNA genes are typically organized into a single operon, an arrangement thought to facilitate gene regulation. In reality, some bacteria and archaea do not share this canonical rRNA arrangement-their 16S and 23S rRNA genes are separated across the genome and referred to as "unlinked". This rearrangement has previously been treated as an anomaly or a byproduct of genome degradation in intracellular bacteria. Here, we leverage complete genome and long-read metagenomic data to show that unlinked 16S and 23S rRNA genes are more common than previously thought. Unlinked rRNA genes occur in many phyla, most significantly within Deinococcus-Thermus, Chloroflexi, and Planctomycetes, and occur in differential frequencies across natural environments. We found that up to 41% of rRNA genes in soil were unlinked, in contrast to the human gut, where all sequenced rRNA genes were linked. The frequency of unlinked rRNA genes may reflect meaningful life history traits, as they tend to be associated with a mix of slow-growing free-living species and intracellular species. We speculate that unlinked rRNA genes may confer selective advantages in some environments, though the specific nature of these advantages remains undetermined and worthy of further investigation. More generally, the prevalence of unlinked rRNA genes in poorly-studied taxa serves as a reminder that paradigms derived from model organisms do not necessarily extend to the broader diversity of bacteria and archaea.


Assuntos
Archaea/genética , Bactérias/genética , Óperon de RNAr/genética , Microbiologia Ambiental , Microbioma Gastrointestinal , Genes de RNAr , Humanos , Metagenômica , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 23S
9.
mBio ; 11(1)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964728

RESUMO

Few studies have comprehensively investigated the temporal variability in soil microbial communities despite widespread recognition that the belowground environment is dynamic. In part, this stems from the challenges associated with the high degree of spatial heterogeneity in soil microbial communities and because the presence of relic DNA (DNA from dead cells or secreted extracellular DNA) may dampen temporal signals. Here, we disentangle the relationships among spatial, temporal, and relic DNA effects on prokaryotic and fungal communities in soils collected from contrasting hillslopes in Colorado, USA. We intensively sampled plots on each hillslope over 6 months to discriminate between temporal variability, intraplot spatial heterogeneity, and relic DNA effects on the soil prokaryotic and fungal communities. We show that the intraplot spatial variability in microbial community composition was strong and independent of relic DNA effects and that these spatial patterns persisted throughout the study. When controlling for intraplot spatial variability, we identified significant temporal variability in both plots over the 6-month study. These microbial communities were more dissimilar over time after relic DNA was removed, suggesting that relic DNA hinders the detection of important temporal dynamics in belowground microbial communities. We identified microbial taxa that exhibited shared temporal responses and show that these responses were often predictable from temporal changes in soil conditions. Our findings highlight approaches that can be used to better characterize temporal shifts in soil microbial communities, information that is critical for predicting the environmental preferences of individual soil microbial taxa and identifying linkages between soil microbial community composition and belowground processes.IMPORTANCE Nearly all microbial communities are dynamic in time. Understanding how temporal dynamics in microbial community structure affect soil biogeochemistry and fertility are key to being able to predict the responses of the soil microbiome to environmental perturbations. Here, we explain the effects of soil spatial structure and relic DNA on the determination of microbial community fluctuations over time. We found that intensive spatial sampling was required to identify temporal effects in microbial communities because of the high degree of spatial heterogeneity in soil and that DNA from nonliving sources masks important temporal patterns. We identified groups of microbes with shared temporal responses and show that these patterns were predictable from changes in soil characteristics. These results provide insight into the environmental preferences and temporal relationships between individual microbial taxa and highlight the importance of considering relic DNA when trying to detect temporal dynamics in belowground communities.


Assuntos
Metagenoma , Metagenômica , Microbiota , Microbiologia do Solo , Metagenômica/métodos , Interações Microbianas , RNA Ribossômico 16S , Estações do Ano , Solo/química , Análise Espaço-Temporal
10.
mBio ; 10(5)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575762

RESUMO

While most bacterial and archaeal taxa living in surface soils remain undescribed, this problem is exacerbated in deeper soils, owing to the unique oligotrophic conditions found in the subsurface. Additionally, previous studies of soil microbiomes have focused almost exclusively on surface soils, even though the microbes living in deeper soils also play critical roles in a wide range of biogeochemical processes. We examined soils collected from 20 distinct profiles across the United States to characterize the bacterial and archaeal communities that live in subsurface soils and to determine whether there are consistent changes in soil microbial communities with depth across a wide range of soil and environmental conditions. We found that bacterial and archaeal diversity generally decreased with depth, as did the degree of similarity of microbial communities to those found in surface horizons. We observed five phyla that consistently increased in relative abundance with depth across our soil profiles: Chloroflexi, Nitrospirae, Euryarchaeota, and candidate phyla GAL15 and Dormibacteraeota (formerly AD3). Leveraging the unusually high abundance of Dormibacteraeota at depth, we assembled genomes representative of this candidate phylum and identified traits that are likely to be beneficial in low-nutrient environments, including the synthesis and storage of carbohydrates, the potential to use carbon monoxide (CO) as a supplemental energy source, and the ability to form spores. Together these attributes likely allow members of the candidate phylum Dormibacteraeota to flourish in deeper soils and provide insight into the survival and growth strategies employed by the microbes that thrive in oligotrophic soil environments.IMPORTANCE Soil profiles are rarely homogeneous. Resource availability and microbial abundances typically decrease with soil depth, but microbes found in deeper horizons are still important components of terrestrial ecosystems. By studying 20 soil profiles across the United States, we documented consistent changes in soil bacterial and archaeal communities with depth. Deeper soils harbored communities distinct from those of the more commonly studied surface horizons. Most notably, we found that the candidate phylum Dormibacteraeota (formerly AD3) was often dominant in subsurface soils, and we used genomes from uncultivated members of this group to identify why these taxa are able to thrive in such resource-limited environments. Simply digging deeper into soil can reveal a surprising number of novel microbes with unique adaptations to oligotrophic subsurface conditions.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Microbiologia do Solo , Archaea/classificação , Archaea/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Metagenômica
11.
Artigo em Inglês | MEDLINE | ID: mdl-30533689

RESUMO

Sinorhizobium phage ΦM6 infects the nitrogen-fixing rhizobial bacterium Sinorhizobium meliloti. ΦM6 most closely resembles marine phages, such as Puniceispirillum phage HMO-2011, rather than previously sequenced rhizobial phages. The 68,176-bp genome is predicted to encode 121 open reading frames, only 10 of which have similarity to those of otherwise-unrelated Sinorhizobium phages.

12.
Science ; 359(6373): 320-325, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29348236

RESUMO

The immense diversity of soil bacterial communities has stymied efforts to characterize individual taxa and document their global distributions. We analyzed soils from 237 locations across six continents and found that only 2% of bacterial phylotypes (~500 phylotypes) consistently accounted for almost half of the soil bacterial communities worldwide. Despite the overwhelming diversity of bacterial communities, relatively few bacterial taxa are abundant in soils globally. We clustered these dominant taxa into ecological groups to build the first global atlas of soil bacterial taxa. Our study narrows down the immense number of bacterial taxa to a "most wanted" list that will be fruitful targets for genomic and cultivation-based efforts aimed at improving our understanding of soil microbes and their contributions to ecosystem functioning.


Assuntos
Bactérias/classificação , Consórcios Microbianos , Microbiologia do Solo , Atlas como Assunto , Bactérias/isolamento & purificação , Filogenia
13.
Nat Microbiol ; 2: 16198, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27798560

RESUMO

Although bacteria within the Verrucomicrobia phylum are pervasive in soils around the world, they are under-represented in both isolate collections and genomic databases. Here, we describe a single verrucomicrobial group within the class Spartobacteria that is not closely related to any previously described taxa. We examined more than 1,000 soils and found this spartobacterial phylotype to be ubiquitous and consistently one of the most abundant soil bacterial phylotypes, particularly in grasslands, where it was typically the most abundant. We reconstructed a nearly complete genome of this phylotype from a soil metagenome for which we propose the provisional name 'Candidatus Udaeobacter copiosus'. The Ca. U. copiosus genome is unusually small for a cosmopolitan soil bacterium, estimated by one measure to be only 2.81 Mbp, compared to the predicted effective mean genome size of 4.74 Mbp for soil bacteria. Metabolic reconstruction suggests that Ca. U. copiosus is an aerobic heterotroph with numerous putative amino acid and vitamin auxotrophies. The large population size, relatively small genome and multiple putative auxotrophies characteristic of Ca. U. copiosus suggest that it may be undergoing streamlining selection to minimize cellular architecture, a phenomenon previously thought to be restricted to aquatic bacteria. Although many soil bacteria need relatively large, complex genomes to be successful in soil, Ca. U. copiosus appears to use an alternative strategy, sacrificing metabolic versatility for efficiency to become dominant in the soil environment.


Assuntos
Genoma Bacteriano , Microbiologia do Solo , Verrucomicrobia/genética , Aerobiose , Evolução Molecular , Processos Heterotróficos , Redes e Vias Metabólicas/genética , Metagenômica , Seleção Genética , Verrucomicrobia/classificação , Verrucomicrobia/isolamento & purificação
14.
Virology ; 450-451: 84-97, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24503070

RESUMO

Phage ΦM12 is an important transducing phage of the nitrogen-fixing rhizobial bacterium Sinorhizobium meliloti. Here we report the genome, phylogenetic analysis, and proteome of ΦM12, the first report of the genome and proteome of a rhizobium-infecting T4-superfamily phage. The structural genes of ΦM12 are most similar to T4-superfamily phages of cyanobacteria. ΦM12 is the first reported T4-superfamily phage to lack genes encoding class I ribonucleotide reductase (RNR) and exonuclease dexA, and to possess a class II coenzyme B12-dependent RNR. ΦM12's novel collection of genes establishes it as the founder of a new group of T4-superfamily phages, fusing features of cyanophages and phages of enteric bacteria.


Assuntos
Bacteriófago T4/classificação , Bacteriófago T4/isolamento & purificação , Genoma Viral , Filogenia , Proteoma/genética , Sinorhizobium meliloti/virologia , Proteínas Virais/genética , Bacteriófago T4/genética , Dados de Sequência Molecular , Proteoma/metabolismo , Proteínas Virais/metabolismo
15.
Virology ; 450-451: 205-12, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24503083

RESUMO

ΦM12 is the first example of a T=19l geometry capsid, encapsulating the recently sequenced genome. Here, we present structures determined by cryo-EM of full and empty capsids. The structure reveals the pattern for assembly of 1140 HK97-like capsid proteins, pointing to interactions at the pseudo 3-fold symmetry axes that hold together the asymmetric unit. The particular smooth surface of the capsid, along with a lack of accessory coat proteins encoded by the genome, suggest that this interface is the primary mechanism for capsid assembly. Two-dimensional averages of the tail, including the neck and baseplate, reveal that ΦM12 has a relatively narrow neck that attaches the tail to the capsid, as well as a three-layer baseplate. When free from DNA, the icosahedral edges expand by about 5nm, while the vertices stay at the same position, forming a similarly smooth, but bowed, T=19l icosahedral capsid.


Assuntos
Bacteriófago T4/isolamento & purificação , Bacteriófago T4/ultraestrutura , Capsídeo/ultraestrutura , Sinorhizobium meliloti/virologia , Sequência de Aminoácidos , Bacteriófago T4/genética , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA