Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochem Biophys Res Commun ; 511(2): 294-299, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30797553

RESUMO

Dictyostelium discoideum (D. discoideum) is a simple eukaryote with a unique life cycle in which it differentiates from unicellular amoebae into a fruiting body upon starvation. Reactive oxygen species (ROS) have been associated with bacterial predation, as well as regulatory events during D. discoideum development and differentiation. Coenzyme A (CoA) is a key metabolic integrator in all living cells. A novel function of CoA in redox regulation, mediated by covalent attachment of CoA to cellular proteins in response to oxidative or metabolic stress, has been recently discovered and termed protein CoAlation. In this study, we report that the level of CoA and protein CoAlation in D. discoideum are developmentally regulated, and correlate with the temporal expression pattern of genes implicated in CoA biosynthesis during morphogenesis. Furthermore, treatment of growing D. discoideum cells with oxidising agents results in a dose-dependent increase of protein CoAlation. However, much higher concentrations were required when compared to mammalian cells and bacteria. Increased resistance of D. discoideum to oxidative stress induced by H2O2 has previously been attributed to high levels of catalase activity. In support of this notion, we found that H2O2-induced protein CoAlation is significantly increased in CatA-deficient D. discoideum cells. Collectively, this study provides insights into the role of CoA and protein CoAlation in the maintenance of redox homeostasis in amoeba and during D. discoideum morphogenesis.


Assuntos
Coenzima A/metabolismo , Dictyostelium/crescimento & desenvolvimento , Estresse Oxidativo , Proteínas de Protozoários/metabolismo , Dictyostelium/citologia , Dictyostelium/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Morfogênese , Oxirredução , Processamento de Proteína Pós-Traducional , Infecções por Protozoários/parasitologia , Espécies Reativas de Oxigênio/metabolismo
2.
Int J Mol Sci ; 13(4): 5074-5097, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22606031

RESUMO

The Herb Rhinacanthus nasutus (L.) Kurz, which is native to Thailand and Southeast Asia, has become known for its antioxidant properties. Neuronal loss in a number of diseases including Alzheimer's disease is thought to result, in part, from oxidative stress. Glutamate causes cell death in the mouse hippocampal cell line, HT-22, by unbalancing redox homeostasis, brought about by a reduction in glutathione levels, and amyloid-ß has been shown to induce reactive oxygen species (ROS) production. Here in, we show that ethanol extracts of R. nasutus leaf and root are capable of dose dependently attenuating the neuron cell death caused by both glutamate and amyloid-ß treatment. We used free radical scavenging assays to measure the extracts antioxidant activities and as well as quantifying phenolic, flavonoid and sterol content. Molecules found in R. nasutus, lupeol, stigmasterol and ß-sitosterol are protective against glutamate toxicity.


Assuntos
Acanthaceae/metabolismo , Síndromes Neurotóxicas/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Sitosteroides/farmacologia , Estigmasterol/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Animais , Antioxidantes/farmacologia , Linhagem Celular , Ácido Glutâmico/toxicidade , Glutationa/metabolismo , Hipocampo/citologia , Camundongos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Biochim Biophys Acta ; 1803(4): 482-91, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20036696

RESUMO

Our recent studies have indicated that hyperhomocysteinemia (hHcys) may induce podocyte damage, resulting in glomerulosclerosis. However, the molecular mechanisms mediating hHcys-induced podocyte injury are still poorly understood. In the present study, we first demonstrated that an intact NADPH oxidase system is present in podocytes as shown by detection of its membrane subunit (gp91(phox)) and cytosolic subunit (p47(phox)). Then, confocal microscopy showed that gp91(phox) and p47(phox) could be aggregated in lipid raft (LR) clusters in podocytes treated with homocysteine (Hcys), which were illustrated by their colocalization with cholera toxin B, a common LR marker. Different mechanistic LR disruptors, either methyl-beta-cyclodextrin (MCD) or filipin abolished such Hcys-induced formation of LR-gp91(phox) or LR-p47(phox) transmembrane signaling complexes. By flotation of detergent-resistant membrane fractions we found that gp91(phox) and p47(phox) were enriched in LR fractions upon Hcys stimulation, and such enrichment of NADPH oxidase subunits and increase in its enzyme activity were blocked by MCD or filipin. Functionally, disruption of LR clustering significantly attenuated Hcys-induced podocyte injury, as shown by their inhibitory effects on Hcys-decreased expression of slit diaphragm molecules such as nephrin and podocin. Similarly, Hcys-increased expression of desmin was also reduced by disruption of LR clustering. In addition, inhibition of such LR-associated redox signaling prevented cytoskeleton disarrangement and apoptosis induced by Hcys. It is concluded that NADPH oxidase subunits aggregation and consequent activation of this enzyme through LR clustering is an important molecular mechanism triggering oxidative injury of podocytes induced by Hcys.


Assuntos
Homocisteína/farmacologia , Glicoproteínas de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , NADPH Oxidases/metabolismo , Podócitos/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Western Blotting , Espectroscopia de Ressonância de Spin Eletrônica , Filipina/farmacologia , Citometria de Fluxo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Microdomínios da Membrana/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2 , NADPH Oxidases/genética , Oxirredução , Estresse Oxidativo , Podócitos/metabolismo , Podócitos/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
4.
Biochim Biophys Acta ; 1801(12): 1294-304, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20858552

RESUMO

Adipokines have been reported to contribute to glomerular injury during obesity or diabetes mellitus. However, the mechanisms mediating the actions of various adipokines on the kidney remained elusive. The present study was performed to determine whether acid sphingomyelinase (ASM)-ceramide associated lipid raft (LR) clustering is involved in local oxidative stress in glomerular endothelial cells (GECs) induced by adipokines such as visfatin and adiponectin. Using confocal microscopy, visfatin but not adiponectin was found to increase LRs clustering in the membrane of GECs in a dose and time dependent manner. Upon visfatin stimulation ASMase activity was increased, and an aggregation of ASMase product, ceramide and NADPH oxidase subunits, gp91(phox) and p47(phox) was observed in the LR clusters, forming a LR redox signaling platform. The formation of this signaling platform was blocked by prior treatment with LR disruptor filipin, ASMase inhibitor amitriptyline, ASMase siRNA, gp91(phox) siRNA and adiponectin. Corresponding to LR clustering and aggregation of NADPH subunits, superoxide (O(2)(-)) production was significantly increased (2.7 folds) upon visfatin stimulation, as measured by electron spin resonance (ESR) spectrometry. Functionally, visfatin significantly increased the permeability of GEC layer in culture and disrupted microtubular networks, which were blocked by inhibition of LR redox signaling platform formation. In conclusion, the injurious effect of visfatin, but not adiponectin on the glomerular endothelium is associated with the formation of LR redox signaling platforms via LR clustering, which produces local oxidative stress resulting in the disruption of microtubular networks in GECs and increases the glomerular permeability.


Assuntos
Mesângio Glomerular/efeitos dos fármacos , Metabolismo dos Lipídeos , Nicotinamida Fosforribosiltransferase/farmacologia , Transdução de Sinais , Animais , Células Cultivadas , Cromatografia Líquida , Espectroscopia de Ressonância de Spin Eletrônica , Mesângio Glomerular/metabolismo , Camundongos , Microscopia Confocal , Oxirredução , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
5.
Am J Physiol Heart Circ Physiol ; 298(3): H992-H1002, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20061541

RESUMO

The present study determined whether activation of acid sphingomyelinase (ASM) drives membrane proximal lysosomes to fuse to the cell surface, facilitating membrane lipid rafts (LRs) clustering in coronary arterial endothelial cells (CAECs) and leading to endothelial dysfunction. By confocal microscopy, the activators of ASM, phosphatidylinositol (PI), and bis (monoacylglyceryl) phosphate (Bis), and an inducer of ASM, butyrate, were found to increase LRs clustering in bovine CAECs, which was blocked by lysosome fusion inhibitor vacuolin-1. However, arsenic trioxide (Ars), an inducer of de novo synthesis of ceramide, had no such effect. Similarly, vacuolin-1-blockable effects were observed using fluorescence resonance energy transfer detection. Liquid chromatography-electrospray ionization-tandem mass spectrometry analysis demonstrated that all of these treatments, even Ars, increased ceramide production in CAECs. When ASM gene was silenced, all treatments except Ars no longer increased ceramide levels. Furthermore, dynamic fluorescence monitoring in live cells showed that PI and Bis stimulated lysosome-membrane fusion in CAECs. Functionally, PI and Bis impaired endothelium-dependent vasodilation in perfused coronary arteries, which was blocked by vacuolin-1 and a lysosome function inhibitor, bafilomycine. FasL (Fas ligand), a previously confirmed lysosome fusion stimulator as a comparison, also produced a similar effect. It is concluded that ASM activation serves as a triggering mechanism and driving force, leading to fusion of membrane proximal lysosomes into LR clusters on the cell membrane of CAECs, which represents a novel mechanism mediating endothelial dysfunction during death receptor activation or other pathological situation.


Assuntos
Membrana Celular/fisiologia , Vasos Coronários/fisiopatologia , Endotélio Vascular/fisiopatologia , Lisossomos/fisiologia , Fusão de Membrana/fisiologia , Esfingomielina Fosfodiesterase/fisiologia , Animais , Bovinos , Células Cultivadas , Ceramidas/metabolismo , Vasos Coronários/citologia , Vasos Coronários/ultraestrutura , Endotélio Vascular/citologia , Endotélio Vascular/ultraestrutura , Proteína Ligante Fas/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Fusão de Membrana/efeitos dos fármacos , Microdomínios da Membrana/fisiologia , Modelos Animais
6.
Dev Cell ; 47(4): 494-508.e4, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30473004

RESUMO

Cell-cell heterogeneity can facilitate lineage choice during embryonic development because it primes cells to respond to differentiation cues. However, remarkably little is known about the origin of heterogeneity or whether intrinsic and extrinsic variation can be controlled to generate reproducible cell type proportioning seen in vivo. Here, we use experimentation and modeling in D. discoideum to demonstrate that population-level cell cycle heterogeneity can be optimized to generate robust cell fate proportioning. First, cell cycle position is quantitatively linked to responsiveness to differentiation-inducing signals. Second, intrinsic variation in cell cycle length ensures cells are randomly distributed throughout the cell cycle at the onset of multicellular development. Finally, extrinsic perturbation of optimal cell cycle heterogeneity is buffered by compensatory changes in global signal responsiveness. These studies thus illustrate key regulatory principles underlying cell-cell heterogeneity optimization and the generation of robust and reproducible fate choice in development.


Assuntos
Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Dictyostelium/metabolismo , Animais , Linhagem da Célula/fisiologia , Esporos Fúngicos/metabolismo
7.
Free Radic Biol Med ; 48(8): 1109-17, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20116427

RESUMO

In this study, mice lacking the gp91(phox) gene were used to address the role of NADPH oxidase in hyperhomocysteinemia-induced podocyte injury. It was found that a folate-free diet increased plasma homocysteine levels, but failed to increase O(2)(-) production in the glomeruli from gp91(phox) gene knockout (gp91(-/-)) mice, compared with wild-type (gp91(+/+)) mice. Proteinuria and glomerular damage index (GDI) were significantly lower, whereas the glomerular filtration rate (GFR) was higher in gp91(-/-) than in gp91(+/+) mice when they were on the folate-free diet (urine albumin excretion, 21.23+/-1.88 vs 32.86+/-4.03 microg/24 h; GDI, 1.17+/-0.18 vs 2.59+/-0.49; and GFR, 53.01+/-4.69 vs 40.98+/-1.44 microl/min). Hyperhomocysteinemia-induced decrease in nephrin expression and increase in desmin expression in gp91(+/+) mice were not observed in gp91(-/-) mice. Morphologically, foot process effacement and podocyte loss due to hyperhomocysteinemia were significantly attenuated in gp91(-/-) mice. In in vitro studies of podocytes, homocysteine was found to increase gp91(phox) expression and O2(*)(-) generation, which was substantially inhibited by gp91(phox) siRNA. Functionally, homocysteine-induced decrease in vascular endothelial growth factor-A production was abolished by gp91(phox) siRNA or diphenyleneiodonium, a NADPH oxidase inhibitor. These results suggest that the functional integrity of NADPH oxidase is essential for hyperhomocysteinemia-induced podocyte injury and glomerulosclerosis.


Assuntos
Hiper-Homocisteinemia/prevenção & controle , Glicoproteínas de Membrana/genética , NADPH Oxidases/genética , Podócitos/metabolismo , Animais , Deleção de Genes , Glomerulonefrite/fisiopatologia , Hiper-Homocisteinemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2
8.
Antioxid Redox Signal ; 13(7): 975-86, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20406136

RESUMO

This study investigated the role of NMDA receptor in hyperhomocyteinemia (hHcys)-induced NADPH oxidase (Nox) activation and glomerulosclerosis. Sprague-Dawley rats were fed a folate-free (FF) diet to produce hHcys, and a NMDA receptor antagonist, MK-801, was administrated. Rats fed the FF diet exhibited significantly increased plasma homocysteine levels, upregulated NMDA receptor expression, enhanced Nox activity and Nox-dependent O(2)(.-) production in the glomeruli, which were accompanied by remarkable glomerulosclerosis. MK-801 treatment significantly inhibited Nox-dependent O(2)(.-) production induced by hHcys and reduced glomerular damage index as compared with vehicle-treated hHcys rats. Correspondingly, glomerular deposition of extracellular matrix components in hHcys rats was ameliorated by the administration of MK-801. Additionally, hHcys induced an increase in tissue inhibitor of metalloproteinase-1 (TIMP-1) expression and a decrease in matrix metalloproteinase (MMP)-1 and MMP-9 activities, all of which were abolished by MK-801 treatment. In vitro studies showed that homocysteine increased Nox-dependent O(2)(.-) generation in rat mesangial cells, which was blocked by MK-801. Pretreatment with MK-801 also reversed homocysteine-induced decrease in MMP-1 activity and increase in TIMP-1 expression. These results support the view that the NMDA receptor may mediate Nox activation in the kidney during hHcys and thereby play a critical role in the development of hHcys-induced glomerulosclerosis.


Assuntos
Hiper-Homocisteinemia/metabolismo , Glomérulos Renais/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Linhagem Celular , Maleato de Dizocilpina/farmacologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Ácido Fólico/genética , Ácido Fólico/metabolismo , Expressão Gênica , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/genética , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Glomérulos Renais/citologia , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , N-Metilaspartato/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA