Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(5): 2854-2862, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29384659

RESUMO

Although minerals are known to affect the environmental fate and transformation of heavy-metal ions, little is known about their interaction with the heavily exploited silver nanoparticles (AgNPs). Proposed here is a combination of hitherto under-utilized micro-Raman-based mapping and chemometric methods for imaging the distribution of AgNPs on various mineral surfaces and their molecular interaction mechanisms. The feasibility of the Raman-based imaging method was tested on two macro- and microsized mineral models, muscovite [KAl2(AlSi3O10)(OH)2] and corundum (α-Al2O3), under key environmental conditions (ionic strength and pH). Both AgNPs- and AgNPs+ were found to covalently attach to corundum (pHpzc = 9.1) through the formation of Ag-O-Al- bonds and thereby to potentially experience reduced environmental mobility. Because label-free Raman imaging showed no molecular interactions between AgNPs- and muscovite (pHpzc = 7.5), a label-enhanced Raman imaging approach was developed for mapping the scarce spatial distribution of AgNPs- on such mineral surfaces. Raman maps comprising of n = 625-961 spectra for each sample/control were rapidly analyzed in Vespucci, a free open-source software, and the results were confirmed via ICP-OES, AFM, and SEM-EDX. The proposed Raman-based imaging requires minimum to no sample preparation; is sensitive, noninvasive, cost-effective; and might be extended to other environmentally relevant systems.


Assuntos
Nanopartículas Metálicas , Prata , Adsorção , Íons , Minerais
2.
Environ Sci Technol ; 50(13): 7056-65, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27253383

RESUMO

Nowadays, silver nanoparticles (AgNPs) are utilized in numerous applications, raising justified concerns about their release into the environment. This study demonstrates the potential to use freshwater crayfish as a benthic-zone indicator of nanosilver and ionic silver pollution. Crayfish were acclimated to 20 L aquaria filled with Hudson River water (HRW) and exposed for 14 days to widely used Creighton AgNPs and Ag(+) at doses of up to 360 µg L(-1) to surpass regulated water concentrations. The uptake and distribution of Ag in over 650 exoskeletons, gills, hepatopancreas and muscles samples were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) in conjunction with two complementary U.S. EPA-endorsed methods: the external calibration and the standard additions. Reflecting the environmental plasticity of the two investigated species, Orconectes virilis accumulated in a dose-dependent manner more Ag than Procambarus clarkii (on average 31% more Ag). Both species showed DNA damage and severe histological changes in the presence of Ag. However, Ag(+) generally led to higher Ag accumulations (28%) and was more toxic. By the harvest day, about 14 ± 9% of the 360 µg L(-1) of AgNP exposure in the HRW oxidized to Ag(+) and may have contributed to the observed toxicities and bioaccumulations. The hepatopancreas (1.5-17.4 µg of Ag g(-1) of tissue) was identified as the best tissue-indicator of AgNP pollution, while the gills (4.5-22.0 µg g(-1)) and hepatopancreas (2.5-16.7 µg g(-1)) complementarily monitored the presence of Ag(+).


Assuntos
Astacoidea , Prata/toxicidade , Animais , Água Doce , Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA