Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37797308

RESUMO

Lactate dehydrogenase (LDH, EC.1.1.127) is an important enzyme engaged in the anaerobic metabolism of cells, catalyzing the conversion of pyruvate to lactate and NADH to NAD+. LDH is a relevant enzyme to investigate structure-function relationships. The present work provides the missing link in our understanding of the evolution of LDHs. This allows to explain (i) the various evolutionary origins of LDHs in eukaryotic cells and their further diversification and (ii) subtle phenotypic modifications with respect to their regulation capacity. We identified a group of cyanobacterial LDHs displaying eukaryotic-like LDH sequence features. The biochemical and structural characterization of Cyanobacterium aponinum LDH, taken as representative, unexpectedly revealed that it displays homotropic and heterotropic activation, typical of an allosteric enzyme, whereas it harbors a long N-terminal extension, a structural feature considered responsible for the lack of allosteric capacity in eukaryotic LDHs. Its crystallographic structure was solved in 2 different configurations typical of the R-active and T-inactive states encountered in allosteric LDHs. Structural comparisons coupled with our evolutionary analyses helped to identify 2 amino acid positions that could have had a major role in the attenuation and extinction of the allosteric activation in eukaryotic LDHs rather than the presence of the N-terminal extension. We tested this hypothesis by site-directed mutagenesis. The resulting C. aponinum LDH mutants displayed reduced allosteric capacity mimicking those encountered in plants and human LDHs. This study provides a new evolutionary scenario of LDHs that unifies descriptions of regulatory properties with structural and mutational patterns of these important enzymes.


Assuntos
L-Lactato Desidrogenase , Lactato Desidrogenases , Humanos , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/metabolismo
2.
Mol Biol Evol ; 39(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056899

RESUMO

We unveil the intimate relationship between protein dynamics and allostery by following the trajectories of model proteins in their conformational and sequence spaces. Starting from a nonallosteric hyperthermophilic malate dehydrogenase, we have tracked the role of protein dynamics in the evolution of the allosteric capacity. Based on a large phylogenetic analysis of the malate (MalDH) and lactate dehydrogenase (LDH) superfamily, we identified two amino acid positions that could have had a major role for the emergence of allostery in LDHs, which we targeted for investigation by site-directed mutagenesis. Wild-type MalDH and the single and double mutants were tested with respect to their substrate recognition profiles. The double mutant displayed a sigmoid-shaped profile typical of homotropic activation in LDH. By using molecular dynamics simulations, we showed that the mutations induce a drastic change in the protein sampling of its conformational landscape, making transiently T-like (inactive) conformers, typical of allosteric LDHs, accessible. Our data fit well with the seminal key concept linking protein dynamics and evolvability. We showed that the selection of a new phenotype can be achieved by a few key dynamics-enhancing mutations causing the enrichment of low-populated conformational substates.


Assuntos
Malato Desidrogenase , Malatos , Regulação Alostérica , Aminoácidos/genética , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Mutação , Filogenia
3.
Mol Biol Evol ; 38(5): 1761-1776, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33450027

RESUMO

Previous reports have shown that environmental temperature impacts proteome evolution in Bacteria and Archaea. However, it is unknown whether thermoadaptation mainly occurs via the sequential accumulation of substitutions, massive horizontal gene transfers, or both. Measuring the real contribution of amino acid substitution to thermoadaptation is challenging, because of confounding environmental and genetic factors (e.g., pH, salinity, genomic G + C content) that also affect proteome evolution. Here, using Methanococcales, a major archaeal lineage, as a study model, we show that optimal growth temperature is the major factor affecting variations in amino acid frequencies of proteomes. By combining phylogenomic and ancestral sequence reconstruction approaches, we disclose a sequential substitutional scheme in which lysine plays a central role by fine tuning the pool of arginine, serine, threonine, glutamine, and asparagine, whose frequencies are strongly correlated with optimal growth temperature. Finally, we show that colonization to new thermal niches is not associated with high amounts of horizontal gene transfers. Altogether, although the acquisition of a few key proteins through horizontal gene transfer may have favored thermoadaptation in Methanococcales, our findings support sequential amino acid substitutions as the main factor driving thermoadaptation.


Assuntos
Substituição de Aminoácidos , Methanococcales/genética , Termotolerância/genética , Transferência Genética Horizontal , Methanococcales/química , Proteoma
4.
Mol Biol Evol ; 38(6): 2396-2412, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33533884

RESUMO

The cell cycle is a fundamental process that has been extensively studied in bacteria. However, many of its components and their interactions with machineries involved in other cellular processes are poorly understood. Furthermore, most knowledge relies on the study of a few models, but the real diversity of the cell division apparatus and its evolution are largely unknown. Here, we present a massive in-silico analysis of cell division and associated processes in around 1,000 genomes of the Firmicutes, a major bacterial phylum encompassing models (i.e. Bacillus subtilis, Streptococcus pneumoniae, and Staphylococcus aureus), as well as many important pathogens. We analyzed over 160 proteins by using an original approach combining phylogenetic reconciliation, phylogenetic profiles, and gene cluster survey. Our results reveal the presence of substantial differences among clades and pinpoints a number of evolutionary hotspots. In particular, the emergence of Bacilli coincides with an expansion of the gene repertoires involved in cell wall synthesis and remodeling. We also highlight major genomic rearrangements at the emergence of Streptococcaceae. We establish a functional network in Firmicutes that allows identifying new functional links inside one same process such as between FtsW (peptidoglycan polymerase) and a previously undescribed Penicilin-Binding Protein or between different processes, such as replication and cell wall synthesis. Finally, we identify new candidates involved in sporulation and cell wall synthesis. Our results provide a previously undescribed view on the diversity of the bacterial cell cycle, testable hypotheses for further experimental studies, and a methodological framework for the analysis of any other biological system.


Assuntos
Evolução Biológica , Divisão Celular/genética , Firmicutes/genética , Família Multigênica , Simulação por Computador , Sintenia
5.
Am J Hum Genet ; 102(3): 364-374, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29429573

RESUMO

Despite the rapid discovery of genes for rare genetic disorders, we continue to encounter individuals presenting with syndromic manifestations. Here, we have studied four affected people in three families presenting with cholestasis, congenital diarrhea, impaired hearing, and bone fragility. Whole-exome sequencing of all affected individuals and their parents identified biallelic mutations in Unc-45 Myosin Chaperone A (UNC45A) as a likely driver for this disorder. Subsequent in vitro and in vivo functional studies of the candidate gene indicated a loss-of-function paradigm, wherein mutations attenuated or abolished protein activity with concomitant defects in gut development and function.


Assuntos
Osso e Ossos/patologia , Colestase/genética , Diarreia/genética , Perda Auditiva/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação com Perda de Função/genética , Adolescente , Animais , Pré-Escolar , Diarreia/fisiopatologia , Família , Feminino , Fibroblastos/patologia , Motilidade Gastrointestinal , Humanos , Recém-Nascido , Linfócitos/patologia , Masculino , Linhagem , Fenótipo , Síndrome , Adulto Jovem , Peixe-Zebra
6.
New Phytol ; 231(4): 1599-1611, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33978992

RESUMO

We recently described, in Cannabis sativa, the oldest sex chromosome system documented so far in plants (12-28 Myr old). Based on the estimated age, we predicted that it should be shared by its sister genus Humulus, which is known also to possess XY chromosomes. Here, we used transcriptome sequencing of an F1 family of H. lupulus to identify and study the sex chromosomes in this species using the probabilistic method SEX-DETector. We identified 265 sex-linked genes in H. lupulus, which preferentially mapped to the C. sativa X chromosome. Using phylogenies of sex-linked genes, we showed that a region of the sex chromosomes had already stopped recombining in an ancestor of both species. Furthermore, as in C. sativa, Y-linked gene expression reduction is correlated to the position on the X chromosome, and highly Y degenerated genes showed dosage compensation. We report, for the first time in Angiosperms, a sex chromosome system that is shared by two different genera. Thus, recombination suppression started at least 21-25 Myr ago, and then (either gradually or step-wise) spread to a large part of the sex chromosomes (c. 70%), leading to a degenerated Y chromosome.


Assuntos
Cannabis , Humulus , Cannabis/genética , Cromossomos de Plantas/genética , Evolução Molecular , Humulus/genética , Filogenia , Cromossomos Sexuais/genética
7.
BMC Evol Biol ; 20(1): 55, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32408858

RESUMO

BACKGROUND: Meiosis is essential for sexual reproduction and generates genetically diverse haploid gametes from a diploid germ cell. Reduction of ploidy depends on active chromosome movements during early meiotic prophase I. Chromosome movements require telomere attachment to the nuclear envelope. This attachment is mediated by telomere adaptor proteins. Telomere adaptor proteins have to date been identified in fission yeast and mice. In the mouse, they form a complex composed of the meiotic proteins TERB1, TERB2, and MAJIN. No sequence similarity was observed between these three mouse proteins and the adaptor proteins of fission yeast, raising the question of the evolutionary history and significance of this specific protein complex. RESULT: Here, we show the TERB1, TERB2, and MAJIN proteins are found throughout the Metazoa and even in early-branching non-bilateral phyla such as Cnidaria, Placozoa and Porifera. Metazoan TERB1, TERB2, and MAJIN showed comparable domain architecture across all clades. Furthermore, the protein domains involved in the formation of the complex as well as those involved for the interaction with the telomere shelterin protein and the LINC complexes revealed high sequence similarity. Finally, gene expression in the cnidarian Hydra vulgaris provided evidence that the TERB1-TERB2-MAJIN complex is selectively expressed in the germ line. CONCLUSION: Our results indicate that the TERB1-TERB2-MAJIN complex has an ancient origin in metazoans, suggesting conservation of meiotic functions.


Assuntos
Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Meiose/genética , Proteínas de Membrana/genética , Filogenia , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Ciclo Celular/química , Feminino , Regulação da Expressão Gênica , Células Germinativas/metabolismo , Gônadas/metabolismo , Masculino , Proteínas de Membrana/química , Camundongos , Domínios Proteicos , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo
8.
Bioinformatics ; 35(2): 329-331, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29912383

RESUMO

Summary: The exploration and comparison of genome organization is routinely used in the frame of genomic and phylogenomic analyses. As a consequence, in the past few years, various tools allowing visualizing genomic contexts have been developed. However, their use is often hampered by a lack of flexibility, particularly concerning associated databases input formats and figure customization. Here we present GeneSpy, a graphical user interface that allows the visualization and dynamic exploration of eukaryotic and prokaryotic annotated genomes. GeneSpy relies on user-friendly manageable local databases and allows the easy customization and production of figures in a multitude of formats. Availability and implementation: GeneSpy is freely available at https://lbbe.univ-lyon1.fr/GeneSpy/ for Linux, Mac OS and Windows under CeCILL license (http://www.cecill.info/licences/). It is written in Python 2.7 and depends on Matplotlib, Tkinter and Sqlite libraries. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Gráficos por Computador , Genômica , Software , Interface Usuário-Computador , Biologia Computacional , Bases de Dados Genéticas , Genoma
9.
Int J Syst Evol Microbiol ; 70(8): 4508-4514, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32628105

RESUMO

The genus Dickeya is an important group of plant pathogens that currently comprises 10 recognized species. Although most Dickeya isolates originated from infected cultivated plants, they are also isolated from water. The genomic sequence of the Australian strain NCPPB 569T clearly established its separation from the previously characterized Dickeya species. The average nucleotide identity and digital DNA-DNA hybridization values obtained by comparing strain NCPPB 569T with strains of characterized Dickeya species were lower than 87 and 32 %, respectively, supporting the delineation of a new species. The name Dickeya poaceiphila sp. nov. is proposed for this taxon with the type strain NCPPB 569T (=CFBP 8731T). Two other strains isolated in Australia, CFBP 1537 and CFBP 2040, also belong to this species. Phenotypic and genomic comparisons enabled the identification of traits distinguishing D. poaceiphila isolates from strains of other Dickeya species.


Assuntos
Enterobacteriaceae/classificação , Filogenia , Saccharum/microbiologia , Austrália , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Enterobacteriaceae/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Environ Microbiol ; 21(8): 2809-2835, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30969462

RESUMO

Dickeya is a genus of phytopathogenic enterobacterales causing soft rot in a variety of plants (e.g. potato, chicory, maize). Among the species affiliated to this genus, Dickeya aquatica, described in 2014, remained particularly mysterious because it had no known host. Furthermore, while D. aquatica was proposed to represent a deep-branching species among Dickeya genus, its precise phylogenetic position remained elusive. Here, we report the complete genome sequence of the D. aquatica type strain 174/2. We demonstrate the affinity of D. aquatica strain 174/2 for acidic fruits such as tomato and cucumber and show that exposure of this bacterium to acidic pH induces twitching motility. An in-depth phylogenomic analysis of all available Dickeya proteomes pinpoints D. aquatica as the second deepest branching lineage within this genus and reclassifies two lineages that likely correspond to new genomospecies (gs.): Dickeya gs. poaceaephila (Dickeya sp NCPPB 569) and Dickeya gs. undicola (Dickeya sp 2B12), together with a new putative genus, tentatively named Prodigiosinella. Finally, from comparative analyses of Dickeya proteomes, we infer the complex evolutionary history of this genus, paving the way to study the adaptive patterns and processes of Dickeya to different environmental niches and hosts. In particular, we hypothesize that the lack of xylanases and xylose degradation pathways in D. aquatica could reflect adaptation to aquatic charophyte hosts which, in contrast to land plants, do not contain xyloglucans.


Assuntos
Evolução Biológica , Gammaproteobacteria/patogenicidade , Dickeya , Gammaproteobacteria/genética , Genoma Bacteriano , Filogenia , Virulência , Sequenciamento Completo do Genoma
11.
Proc Natl Acad Sci U S A ; 113(31): 8813-8, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27432973

RESUMO

A highly conserved DNA uptake system allows many bacteria to actively import and integrate exogenous DNA. This process, called natural transformation, represents a major mechanism of horizontal gene transfer (HGT) involved in the acquisition of virulence and antibiotic resistance determinants. Despite evidence of HGT and the high level of conservation of the genes coding the DNA uptake system, most bacterial species appear non-transformable under laboratory conditions. In naturally transformable species, the DNA uptake system is only expressed when bacteria enter a physiological state called competence, which develops under specific conditions. Here, we investigated the mechanism that controls expression of the DNA uptake system in the human pathogen Legionella pneumophila We found that a repressor of this system displays a conserved ProQ/FinO domain and interacts with a newly characterized trans-acting sRNA, RocR. Together, they target mRNAs of the genes coding the DNA uptake system to control natural transformation. This RNA-based silencing represents a previously unknown regulatory means to control this major mechanism of HGT. Importantly, these findings also show that chromosome-encoded ProQ/FinO domain-containing proteins can assist trans-acting sRNAs and that this class of RNA chaperones could play key roles in post-transcriptional gene regulation throughout bacterial species.


Assuntos
Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Legionella pneumophila/genética , RNA Bacteriano/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Perfilação da Expressão Gênica/métodos , Humanos , Legionella pneumophila/metabolismo , Doença dos Legionários/microbiologia , Modelos Genéticos , Regulon/genética , Transformação Bacteriana
12.
Proc Natl Acad Sci U S A ; 113(11): E1452-9, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929322

RESUMO

The discovery of ∼20-kb gene clusters containing a family of paralogs of tRNA guanosine transglycosylase genes, called tgtA5, alongside 7-cyano-7-deazaguanine (preQ0) synthesis and DNA metabolism genes, led to the hypothesis that 7-deazaguanine derivatives are inserted in DNA. This was established by detecting 2'-deoxy-preQ0 and 2'-deoxy-7-amido-7-deazaguanosine in enzymatic hydrolysates of DNA extracted from the pathogenic, Gram-negative bacteria Salmonella enterica serovar Montevideo. These modifications were absent in the closely related S. enterica serovar Typhimurium LT2 and from a mutant of S Montevideo, each lacking the gene cluster. This led us to rename the genes of the S. Montevideo cluster as dpdA-K for 7-deazapurine in DNA. Similar gene clusters were analyzed in ∼150 phylogenetically diverse bacteria, and the modifications were detected in DNA from other organisms containing these clusters, including Kineococcus radiotolerans, Comamonas testosteroni, and Sphingopyxis alaskensis Comparative genomic analysis shows that, in Enterobacteriaceae, the cluster is a genomic island integrated at the leuX locus, and the phylogenetic analysis of the TgtA5 family is consistent with widespread horizontal gene transfer. Comparison of transformation efficiencies of modified or unmodified plasmids into isogenic S. Montevideo strains containing or lacking the cluster strongly suggests a restriction-modification role for the cluster in Enterobacteriaceae. Another preQ0 derivative, 2'-deoxy-7-formamidino-7-deazaguanosine, was found in the Escherichia coli bacteriophage 9 g, as predicted from the presence of homologs of genes involved in the synthesis of the archaeosine tRNA modification. These results illustrate a deep and unexpected evolutionary connection between DNA and tRNA metabolism.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , Ilhas Genômicas , Guanina/análogos & derivados , Salmonella enterica/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Colífagos/genética , Colífagos/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análise , Desoxiguanosina/metabolismo , Transferência Genética Horizontal , Guanina/química , Guanina/metabolismo , Guanosina/análogos & derivados , Guanosina/metabolismo , Dados de Sequência Molecular , Família Multigênica , Mutação , Filogenia , Purinas/análise , RNA de Transferência/genética , RNA de Transferência/metabolismo , Salmonella enterica/metabolismo , Salmonella typhimurium/genética
13.
J Cell Sci ; 129(20): 3695-3703, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27672020

RESUMO

Eukaryogenesis - the emergence of eukaryotic cells - represents a pivotal evolutionary event. With a fundamentally more complex cellular plan compared to prokaryotes, eukaryotes are major contributors to most aspects of life on Earth. For decades, we have understood that eukaryotic origins lie within both the Archaea domain and α-Proteobacteria. However, it is much less clear when, and from which precise ancestors, eukaryotes originated, or the order of emergence of distinctive eukaryotic cellular features. Many competing models for eukaryogenesis have been proposed, but until recently, the absence of discriminatory data meant that a consensus was elusive. Recent advances in paleogeology, phylogenetics, cell biology and microbial diversity, particularly the discovery of the 'Candidatus Lokiarcheaota' phylum, are now providing new insights into these aspects of eukaryogenesis. The new data have allowed the time frame during which eukaryogenesis occurred to be finessed, a more precise identification of the contributing lineages and the biological features of the contributors to be clarified. Considerable advances have now been used to pinpoint the prokaryotic origins of key eukaryotic cellular processes, such as intracellular compartmentalisation, with major implications for models of eukaryogenesis.


Assuntos
Células Eucarióticas/metabolismo , Fósseis , Filogenia , Archaea/metabolismo , Células Procarióticas , Fatores de Tempo
14.
Environ Microbiol ; 20(1): 281-292, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29124868

RESUMO

Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspecies hydrogen transfer. Hydrogen production was higher in M. prima strain PhosAc3 cells co-cultured with SRB than in cells cultured alone in the presence of elemental sulfur. We propose that the efficient sugar-oxidizing metabolism by M. prima strain PhosAc3 in syntrophic association with a hydrogenotrophic sulfate-reducing bacterium can be extrapolated to all members of the Mesotoga genus. Genome comparison of Thermotogae members suggests that the metabolic difference between Mesotoga and Thermotoga species (sugar oxidation versus fermentation) is mainly due to the absence of the bifurcating [FeFe]-hydrogenase in the former. Such an obligate oxidative process for using sugars, unusual within prokaryotes, is the first reported within the Thermotogae. It is hypothesized to be of primary ecological importance for growth of Mesotoga spp. in the environments that they inhabit.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Desulfotomaculum/metabolismo , Desulfovibrio vulgaris/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/metabolismo , Açúcares/metabolismo , Simbiose/fisiologia , Técnicas de Cocultura , Fermentação/fisiologia , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/crescimento & desenvolvimento , Hidrogênio/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfatos/metabolismo , Enxofre/metabolismo
15.
Mol Phylogenet Evol ; 127: 46-54, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29684598

RESUMO

Phylogenetic analyses of conserved core genes have disentangled most of the ancient relationships in Archaea. However, some groups remain debated, like the DPANN, a deep-branching super-phylum composed of nanosized archaea with reduced genomes. Among these, the Nanohaloarchaea require high-salt concentrations for growth. Their discovery in 2012 was significant because they represent, together with Halobacteria (a Class belonging to Euryarchaeota), the only two described lineages of extreme halophilic archaea. The phylogenetic position of Nanohaloarchaea is highly debated, being alternatively proposed as the sister-lineage of Halobacteria or a member of the DPANN super-phylum. Pinpointing the phylogenetic position of extreme halophilic archaea is important to improve our knowledge of the deep evolutionary history of Archaea and the molecular adaptive processes and evolutionary paths that allowed their emergence. Using comparative genomic approaches, we identified 258 markers carrying a reliable phylogenetic signal. By combining strategies limiting the impact of biases on phylogenetic inference, we showed that Nanohaloarchaea and Halobacteria represent two independent lines that derived from two distinct but related methanogen Class II lineages. This implies that adaptation to high salinity emerged twice independently in Archaea and indicates that emergence of Nanohaloarchaea within DPANN in previous studies is likely the consequence of a tree reconstruction artifact, challenging the existence of this super-phylum.


Assuntos
Euryarchaeota/classificação , Filogenia , Salinidade , Teorema de Bayes , Sequência Conservada , Genes Arqueais , Genômica
16.
Proc Natl Acad Sci U S A ; 112(21): 6670-5, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964353

RESUMO

One of the most fundamental questions in evolutionary biology is the origin of the lineage leading to eukaryotes. Recent phylogenomic analyses have indicated an emergence of eukaryotes from within the radiation of modern Archaea and specifically from a group comprising Thaumarchaeota/"Aigarchaeota" (candidate phylum)/Crenarchaeota/Korarchaeota (TACK). Despite their major implications, these studies were all based on the reconstruction of universal trees and left the exact placement of eukaryotes with respect to the TACK lineage unclear. Here we have applied an original two-step approach that involves the separate analysis of markers shared between Archaea and eukaryotes and between Archaea and Bacteria. This strategy allowed us to use a larger number of markers and greater taxonomic coverage, obtain high-quality alignments, and alleviate tree reconstruction artifacts potentially introduced when analyzing the three domains simultaneously. Our results robustly indicate a sister relationship of eukaryotes with the TACK superphylum that is strongly associated with a distinct root of the Archaea that lies within the Euryarchaeota, challenging the traditional topology of the archaeal tree. Therefore, if we are to embrace an archaeal origin for eukaryotes, our view of the evolution of the third domain of life will have to be profoundly reconsidered, as will many areas of investigation aimed at inferring ancestral characteristics of early life and Earth.


Assuntos
Archaea/classificação , Archaea/genética , Evolução Biológica , Bactérias/classificação , Bactérias/genética , Teorema de Bayes , Bases de Dados Genéticas , Eucariotos/classificação , Eucariotos/genética , Euryarchaeota/classificação , Euryarchaeota/genética , Evolução Molecular , Marcadores Genéticos , Especiação Genética , Genoma Arqueal , Genoma Bacteriano , Modelos Biológicos , Filogenia
17.
PLoS Genet ; 11(8): e1005460, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26291327

RESUMO

Understanding the principles underlying the plasticity of signal transduction networks is fundamental to decipher the functioning of living cells. In Myxococcus xanthus, a particular chemosensory system (Frz) coordinates the activity of two separate motility systems (the A- and S-motility systems), promoting multicellular development. This unusual structure asks how signal is transduced in a branched signal transduction pathway. Using combined evolution-guided and single cell approaches, we successfully uncoupled the regulations and showed that the A-motility regulation system branched-off an existing signaling system that initially only controlled S-motility. Pathway branching emerged in part following a gene duplication event and changes in the circuit structure increasing the signaling efficiency. In the evolved pathway, the Frz histidine kinase generates a steep biphasic response to increasing external stimulations, which is essential for signal partitioning to the motility systems. We further show that this behavior results from the action of two accessory response regulator proteins that act independently to filter and amplify signals from the upstream kinase. Thus, signal amplification loops may underlie the emergence of new connectivity in signal transduction pathways.


Assuntos
Myxococcus xanthus/fisiologia , Transdução de Sinais , Proteínas de Bactérias/metabolismo , Quimiotaxia , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Histidina Quinase , Proteínas Quinases/fisiologia
18.
Chromosoma ; 125(3): 355-60, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26968413

RESUMO

The synaptonemal complex (SC), a key structure of meiosis that assembles during prophase I, has been initially described 60 years ago. Since then, the structure has been described in many sexually reproducing organisms. However, the SC protein components were characterized in only few model organisms. Surprisingly, they lacked an apparent evolutionary relationship despite the conserved structural organization of the SC. For better understanding of this obvious discrepancy, the evolutionary history of the SC and its individual components has been investigated in Metazoa in detail. The results are consistent with the notion of a single origin of the metazoan SC and provide evidence for a dynamic evolutionary history of the SC components. In this mini review, we recapitulate and discuss new insights into metazoan SC evolution.


Assuntos
Evolução Molecular , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo , Animais , Humanos
19.
Mol Biol Evol ; 33(2): 305-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26541173

RESUMO

In a recent article, Nelson-Sathi et al. (NS) report that the origins of major archaeal lineages (MAL) correspond to massive group-specific gene acquisitions via HGT from bacteria (Nelson-Sathi et al. 2015. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517(7532):77-80.). If correct, this would have fundamental implications for the process of diversification in microbes. However, a reexamination of these data and results shows that the methodology used by NS systematically inflates the number of genes acquired at the root of each MAL, and incorrectly assumes bacterial origins for these genes. A reanalysis of their data with appropriate phylogenetic models accounting for the dynamics of gene gain and loss between lineages supports the continuous acquisition of genes over long periods in the evolution of Archaea.


Assuntos
Archaea/genética , Bactérias/genética , Evolução Molecular , Transferência Genética Horizontal , Genótipo , Archaea/classificação , Genes Arqueais , Genes Bacterianos , Genômica , Filogenia
20.
Mol Biol Evol ; 33(8): 2170-2, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27189556

RESUMO

Ribosomal proteins (r-proteins) are increasingly used as an alternative to ribosomal rRNA for prokaryotic systematics. However, their routine use is difficult because r-proteins are often not or wrongly annotated in complete genome sequences, and there is currently no dedicated exhaustive database of r-proteins. RiboDB aims at fulfilling this gap. This weekly updated comprehensive database allows the fast and easy retrieval of r-protein sequences from publicly available complete prokaryotic genome sequences. The current version of RiboDB contains 90 r-proteins from 3,750 prokaryotic complete genomes encompassing 38 phyla/major classes and 1,759 different species. RiboDB is accessible at http://ribodb.univ-lyon1.fr and through ACNUC interfaces.


Assuntos
Bases de Dados Factuais , Proteínas Ribossômicas/classificação , Sequência de Bases , Bases de Dados de Proteínas , Filogenia , Células Procarióticas/classificação , RNA Ribossômico , Ribossomos/classificação , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA