Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 18(12): e1010353, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36520924

RESUMO

Self-fertilisation is widespread among hermaphroditic species across the tree of life. Selfing has many consequences on the genetic diversity and the evolutionary dynamics of populations, which may in turn affect macroevolutionary processes such as speciation. On the one hand, because selfing increases genetic drift and reduces migration rate among populations, it may be expected to promote speciation. On the other hand, because selfing reduces the efficacy of selection, it may be expected to hamper ecological speciation. To better understand under which conditions and in which direction selfing affects the build-up of reproductive isolation, an explicit population genetics model is required. Here, we focus on the interplay between genetic drift, selection and genetic linkage by studying speciation without gene flow. We test how fast populations with different rates of selfing accumulate mutations leading to genetic incompatibilities. When speciation requires populations to pass through a fitness valley caused by underdominant and compensatory mutations, selfing reduces the depth and/or breadth of the valley, and thus overall facilitates the fixation of incompatibilities. When speciation does not require populations to pass through a fitness valley, as for Bateson-Dobzhanzky-Muller incompatibilities (BDMi), the lower effective population size and higher genetic linkage in selfing populations both facilitate the fixation of incompatibilities. Interestingly, and contrary to intuitive expectations, local adaptation does not always accelerate the fixation of incompatibilities in outcrossing relative to selfing populations. Our work helps to clarify how incompatibilities accumulate in selfing vs. outcrossing lineages, and has repercussions on the pace of speciation as well as on the genetic architecture of reproductive isolation.


Assuntos
Deriva Genética , Modelos Genéticos , Evolução Biológica , Genética Populacional , Isolamento Reprodutivo , Especiação Genética
2.
Proc Natl Acad Sci U S A ; 119(22): e2112737119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617436

RESUMO

Tropical alpine floras are renowned for high endemism, spectacular giant rosette plants testifying to convergent adaptation to harsh climates with nightly frosts, and recruitment dominated by long-distance dispersal from remote areas. In contrast to the larger, more recent (late Miocene onward) and contiguous expanses of tropical alpine habitat in South America, the tropical alpine flora in Africa is extremely fragmented across small patches on distant mountains of variable age (Oligocene onward). How this has affected the colonization and diversification history of the highly endemic but species-poor afroalpine flora is not well known. Here we infer phylogenetic relationships of ∼20% of its species using novel genome skimming data and published matrices and infer a timeframe for species origins in the afroalpine region using fossil-calibrated molecular clocks. Although some of the mountains are old, and although stem node ages may substantially predate colonization, most lineages appear to have colonized the afroalpine during the last 5 or 10 My. The accumulation of species increased exponentially toward the present. Taken together with recent reports of extremely low intrapopulation genetic diversity and recent intermountain population divergence, this points to a young, unsaturated, and dynamic island scenario. Habitat disturbance caused by the Pleistocene climate oscillations likely induced cycles of colonization, speciation, extinction, and recolonization. This study contributes to our understanding of differences in the histories of recruitment on different tropical sky islands and on oceanic islands, providing insight into the general processes shaping their remarkable floras.


Assuntos
Mudança Climática , Plantas , África Oriental , Ecossistema , Variação Genética , Humanos , Ilhas , Plantas/anatomia & histologia , Plantas/genética , População
3.
Mol Ecol ; 31(16): 4271-4285, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753053

RESUMO

Little is known about the evolution of cold tolerance in polar plant species and how they differ from temperate relatives. To gain insight into their biology and the evolution of cold tolerance, we compared the molecular basis of cold response in three Arctic Brassicaceae species. We conducted a comparative time series experiment to examine transcriptional responses to low temperature. RNA was sampled at 22°C, and after 3, 6, and 24 at 2°C. We then identified sets of genes that were differentially expressed in response to cold and compared them between species, as well as to published data from the temperate Arabidopsis thaliana. Most differentially expressed genes were species-specific, but a significant portion of the cold response was also shared among species. Among thousands of differentially expressed genes, ~200 were shared among the three Arctic species and A. thaliana, while ~100 were exclusively shared among the three Arctic species. Our results show that cold response differs markedly between Arctic Brassicaceae species, but probably builds on a conserved basis found across the family. They also confirm that highly polygenic traits such as cold tolerance may show little repeatability in their patterns of adaptation.


Assuntos
Arabidopsis , Brassicaceae , Aclimatação/genética , Arabidopsis/genética , Brassicaceae/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética
4.
Ann Bot ; 129(2): 171-184, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34643673

RESUMO

BACKGROUND AND AIMS: The Arctic tundra, with its extreme temperatures and short growing season, is evolutionarily young and harbours one of the most species-poor floras on Earth. Arctic species often show little phenotypic and genetic divergence across circumpolar ranges. However, strong intraspecific post-zygotic reproductive isolation (RI) in terms of hybrid sterility has frequently evolved within selfing Arctic species of the genus Draba. Here we assess whether incipient biological species are common in the Arctic flora. METHODS: We conducted an extensive crossing experiment including six species representing four phylogenetically distant families collected across the circumpolar Arctic. We crossed conspecific parental populations representing different spatial scales, raised 740 F1 hybrids to maturity and measured fertility under laboratory conditions. We examined genetic divergence between populations for two of these species (Cardamine bellidifolia and Ranunculus pygmaeus). KEY RESULTS: In five of the six species, we find extensive reduction in pollen fertility and seed set in F1 hybrids; 219 (46 %) of the 477 F1 hybrids generated between parents separated by ≥427 km had <20 % pollen fertility. Isolation with migration (IM) and *BEAST analyses of sequences of eight nuclear genes in C. bellidifolia suggests that reproductively isolated populations of this species diverged during, or even after, the last glaciation. Likewise, Arctic populations of R. pygmaeus were genetically very similar despite exhibiting strongly reduced fertility in crosses, suggesting that RI evolved recently also in this species. CONCLUSION: We show that post-zygotic RI has developed multiple times within taxonomically recognized Arctic species belonging to several distantly related lineages, and that RI may have developed over just a few millennia. Rapid and widespread evolution of incipient biological species in the Arctic flora might be associated with frequent bottlenecks due to glacial cycles, and/or selfing mating systems, which are common in the harsh Arctic environment where pollinators are scarce.


Assuntos
Cardamine , Isolamento Reprodutivo , Hibridização Genética , Plantas , Pólen/genética , Reprodução
5.
Mol Biol Evol ; 37(7): 2052-2068, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32167553

RESUMO

Extreme environments offer powerful opportunities to study how different organisms have adapted to similar selection pressures at the molecular level. Arctic plants have adapted to some of the coldest and driest biomes on Earth and typically possess suites of similar morphological and physiological adaptations to extremes in light and temperature. Here, we compare patterns of molecular evolution in three Brassicaceae species that have independently colonized the Arctic and present some of the first genetic evidence for plant adaptations to the Arctic environment. By testing for positive selection and identifying convergent substitutions in orthologous gene alignments for a total of 15 Brassicaceae species, we find that positive selection has been acting on different genes, but similar functional pathways in the three Arctic lineages. The positively selected gene sets identified in the three Arctic species showed convergent functional profiles associated with extreme abiotic stress characteristic of the Arctic. However, there was little evidence for independently fixed mutations at the same sites and for positive selection acting on the same genes. The three species appear to have evolved similar suites of adaptations by modifying different components in similar stress response pathways, implying that there could be many genetic trajectories for adaptation to the Arctic environment. By identifying candidate genes and functional pathways potentially involved in Arctic adaptation, our results provide a framework for future studies aimed at testing for the existence of a functional syndrome of Arctic adaptation in the Brassicaceae and perhaps flowering plants in general.


Assuntos
Adaptação Biológica , Brassicaceae/genética , Evolução Molecular , Seleção Genética , Substituição de Aminoácidos , Regiões Árticas
6.
New Phytol ; 231(1): 75-84, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33817798

RESUMO

Phytochromes play a central role in mediating adaptive responses to light and temperature throughout plant life cycles. Despite evidence for adaptive importance of natural variation in phytochromes, little information is known about molecular mechanisms that modulate physiological responses of phytochromes in nature. We show evolutionary divergence in physiological responses relevant to thermal stability of a physiologically active form of phytochrome (Pfr) between two sister species of Brassicaceae growing at different latitudes. The higher latitude species (Cardamine bellidifolia; Cb) responded more strongly to light-limited conditions compared with its lower latitude sister (C. nipponica; Cn). Moreover, CbPHYB conferred stronger responses to both light-limited and warm conditions in the phyB-deficient mutant of Arabidopsis thaliana than CnPHYB: that is Pfr CbphyB was more stable in nuclei than CnphyB. Our findings suggest that fine tuning Pfr stability is a fundamental mechanism for plants to optimise phytochrome-related traits in their evolution and adapt to spatially varying environments, and open a new avenue to understand molecular mechanisms that fine tune phytochrome responses in nature.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/genética , Luz , Fitocromo B/genética
7.
Nature ; 506(7486): 47-51, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24499916

RESUMO

Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25-15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.


Assuntos
Biodiversidade , Dieta , Herbivoria , Nematoides , Plantas , Animais , Regiões Árticas , Bison/fisiologia , Clima Frio , Congelamento , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos/fisiologia , Mamutes/fisiologia , Nematoides/classificação , Nematoides/genética , Nematoides/isolamento & purificação , Plantas/classificação , Plantas/genética , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Solo , Fatores de Tempo , Yukon
8.
Mol Ecol ; 26(20): 5773-5783, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28815785

RESUMO

The circumarctic ranges of arctic-alpine plants are thought to have been established in the late Pliocene/early Pleistocene, when the modern arctic tundra was formed in response to climate cooling. Previous findings of range-wide genetic structure in arctic-alpine plants have been thought to support this hypothesis, but few studies have explicitly addressed the temporal framework of the genetic structure. Here, we estimated the demographic history of the genetic structure in the circumarctic Kalmia procumbens using sequences of multiple nuclear loci and examined whether its genetic structure reflects prolonged isolation throughout the Pleistocene. Both Bayesian clustering and phylogenetic analyses revealed genetic distinction between alpine and arctic regions, whereas detailed groupings were somewhat discordant between the analyses. By assuming a population grouping based on the phylogenetic analyses, which likely reflects a deeper intraspecific divergence, we conducted model-based analyses and demonstrated that the intraspecific genetic divergence in K. procumbens likely originated during the last glacial period. Thus, there is no need to postulate range separation throughout the Pleistocene to explain the current genetic structure in this species. This study demonstrates that range-wide genetic structure in arctic-alpine plants does not necessarily result from the late Pliocene/early Pleistocene origin of their circumarctic ranges and emphasizes the importance of a temporal framework of the current genetic structure for understanding the biogeographic history of the arctic flora.


Assuntos
Evolução Biológica , Ericaceae/genética , Genética Populacional , Filogenia , Regiões Árticas , Teorema de Bayes , Clima , Modelos Genéticos
9.
Mol Ecol ; 26(13): 3513-3532, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28390111

RESUMO

High tropical mountains harbour remarkable and fragmented biodiversity thought to a large degree to have been shaped by multiple dispersals of cold-adapted lineages from remote areas. Few dated phylogenetic/phylogeographic analyses are however available. Here, we address the hypotheses that the sub-Saharan African sweet vernal grasses have a dual colonization history and that lineages of independent origins have established secondary contact. We carried out rangewide sampling across the eastern African high mountains, inferred dated phylogenies from nuclear ribosomal and plastid DNA using Bayesian methods, and performed flow cytometry and AFLP (amplified fragment length polymorphism) analyses. We inferred a single Late Pliocene western Eurasian origin of the eastern African taxa, whose high-ploid populations in one mountain group formed a distinct phylogeographic group and carried plastids that diverged from those of the currently allopatric southern African lineage in the Mid- to Late Pleistocene. We show that Anthoxanthum has an intriguing history in sub-Saharan Africa, including Late Pliocene colonization from southeast and north, followed by secondary contact, hybridization, allopolyploidization and local extinction during one of the last glacial cycles. Our results add to a growing body of evidence showing that isolated tropical high mountain habitats have a dynamic recent history involving niche conservatism and recruitment from remote sources, repeated dispersals, diversification, hybridization and local extinction.


Assuntos
Evolução Biológica , Filogenia , Poaceae/classificação , África do Norte , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , Filogeografia
10.
New Phytol ; 211(2): 719-34, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27037925

RESUMO

The flora on the isolated high African mountains or 'sky islands' is remarkable for its peculiar adaptations, local endemism and striking biogeographical connections to remote parts of the world. Ages of the plant lineages and the timing of their radiations have frequently been debated but remain contentious as there are few estimates based on explicit models and fossil-calibrated molecular clocks. We used the plastid region maturaseK (matK) and a Caryophylloflora paleogenica fossil to infer the age of the genus Lychnis, and constructed a data set of three plastid (matK; a ribosomal protein S16 (rps16); and an intergenic spacer (psbE-petL)) and two nuclear (internal transcribed spacer (ITS) and a region spanning exon 18-24 in the second largest subunit of RNA polymerase II (RPB2)) loci for joint estimation of the species tree and divergence time of the African representatives. The time of divergence of the African high-altitude Lychnis was placed in the late Miocene to early Pliocene. A single speciation event was inferred in the early Pliocene; subsequent speciation took place sporadically from the late Pliocene to the middle Pleistocene. We provide further support for a Eurasian origin of the African 'sky islands' floral elements, which seem to have been recruited via dispersals at different times: some old, as in Lychnis, and others very recent. We show that dispersal and diversification within Africa play an important role in shaping these isolated plant communities.


Assuntos
Fósseis , Lychnis/genética , Datação Radiométrica , África , Calibragem , DNA de Plantas/genética , Loci Gênicos , Geografia , Filogenia , Especificidade da Espécie
11.
Mol Phylogenet Evol ; 95: 152-60, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26691641

RESUMO

Many arctic-alpine plants display a highly disjunct distribution between the Arctic/Boreal regions and the southern Asian mountains. Two main hypotheses have been proposed to explain the origin of this biogeographic pattern: (1) south-to-north migration in the late Pliocene/early Pleistocene, and (2) north-to-south migration during the Miocene. The genus Cassiope is disjunctly distributed between the Arctic/Boreal regions and the Himalayan-Hengduan Mountains (HHM) and was selected to test these hypotheses. We constructed a fossil-calibrated phylogeny of Ericaceae using two plastid regions to estimate the crown group age of Cassiope, and used sequence data from thousands of loci produced by restriction site associated DNA sequencing (RAD-seq) to reconstruct the phylogeny of Cassiope. We also performed Bayesian divergence time analysis and biogeographic analysis. The Cassiope crown group was estimated to have originated in the Miocene, which predates the onset of Northern hemisphere glaciation. All HHM species formed a clade together with one eastern Siberian species, and this clade was sister to all other Arctic/Boreal species. This topology implies a northern origin of Cassiope, which is confirmed by our biogeographic analysis. Our results thus suggest that the ancient north-to-south migration hypothesis is most consistent with the origin of Cassiope.


Assuntos
Ericaceae/classificação , Ericaceae/genética , Filogeografia , Regiões Árticas , Sequência de Bases , Teorema de Bayes , China , Fósseis , Especiação Genética , Mianmar , Nepal , Filogenia , Plastídeos/genética , Análise de Sequência de DNA/métodos
12.
Mol Ecol ; 24(15): 3993-4009, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26113148

RESUMO

Birches (Betula spp.) hybridize readily, confounding genetic signatures of refugial isolation and postglacial migration. We aimed to distinguish hybridization from range-shift processes in the two widespread and cold-adapted species B. nana and B. pubescens, previously shown to share a similarly east-west-structured variation in plastid DNA (pDNA). We sampled the two species throughout their ranges and included reference samples of five other Betula species and putative hybrids. We analysed 901 individual plants using mainly nuclear high-resolution markers (amplified fragment length polymorphisms; AFLPs); a subset of 64 plants was also sequenced for two pDNA regions. Whereas the pDNA variation as expected was largely shared between B. nana and B. pubescens, the two species were distinctly differentiated at AFLP loci. In B. nana, both the AFLP and pDNA results corroborated the former pDNA-based hypothesis that it expanded from at least two major refugia in Eurasia, one south of and one east of the North European ice sheets. In contrast, B. pubescens showed a striking lack of geographic structuring of its AFLP variation. We identified a weak but significant increase in nuclear (AFLP) gene flow from B. nana into B. pubescens with increasing latitude, suggesting hybridization has been most frequent at the postglacial expansion front of B. pubescens and that hybrids mainly backcrossed to B. pubescens. Incongruence between pDNA and AFLP variation in B. pubescens can be explained by efficient expansion from a single large refugium combined with leading-edge hybridization and plastid capture from B. nana during colonization of new territory already occupied by this more cold-tolerant species.


Assuntos
Betula/classificação , Hibridização Genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Betula/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Europa (Continente) , Fluxo Gênico , Marcadores Genéticos , Haplótipos , Dados de Sequência Molecular , Análise de Sequência de DNA
13.
Am J Bot ; 102(10): 1703-20, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26437887

RESUMO

PREMISE OF THE STUDY: Many arctic-alpine species have vast geographic ranges, but these may encompass substantial gaps whose origins are poorly understood. Here we address the phylogeographic history of Silene acaulis, a perennial cushion plant with a circumpolar distribution except for a large gap in Siberia. METHODS: We assessed genetic variation in a range-wide sample of 103 populations using plastid DNA (pDNA) sequences and AFLPs (amplified fragment length polymorphisms). We constructed a haplotype network and performed Bayesian phylogenetic analyses based on plastid sequences. We visualized AFLP patterns using principal coordinate analysis, identified genetic groups using the program structure, and estimated genetic diversity and rarity indices by geographic region. KEY RESULTS: The history of the main pDNA lineages was estimated to span several glaciations. AFLP data revealed a distinct division between Beringia/North America and Europe/East Greenland. These two regions shared only one of 17 pDNA haplotypes. Populations on opposite sides of the Siberian range gap (Ural Mountains and Chukotka) were genetically distinct and appear to have resulted from postglacial leading-edge colonizations. We inferred two refugia in North America (Beringia and the southern Rocky Mountains) and two in Europe (central-southern Europe and northern Europe/East Greenland). Patterns in the East Atlantic region suggested transoceanic long-distance dispersal events. CONCLUSIONS: Silene acaulis has a highly dynamic history characterized by vicariance, regional extinction, and recolonization, with persistence in at least four refugia. Long-distance dispersal explains patterns across the Atlantic Ocean, but we found no evidence of dispersal across the Siberian range gap.


Assuntos
Extinção Biológica , Dispersão Vegetal , Polimorfismo Genético , Silene/fisiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Regiões Árticas , Teorema de Bayes , DNA de Cloroplastos/genética , Dados de Sequência Molecular , Filogenia , Filogeografia , Análise de Sequência de DNA , Silene/genética
14.
J Plant Res ; 128(3): 437-44, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25773306

RESUMO

Arctic-alpine plants have expanded and contracted their ranges in response to the Pleistocene climate oscillations. Today, many arctic-alpine plants have vast distributions in the circumarctic region as well as marginal, isolated occurrences in high mountains at lower latitudes. These marginal populations may represent relict, long-standing populations that have persisted for several cycles of cold and warm climate during the Pleistocene, or recent occurrences that either result from southward step-wise migration during the last glacial period or from recent long-distance dispersal. In light of these hypotheses, we investigated the biogeographic history of the marginal Japanese populations of the widespread arctic-alpine plant Vaccinium vitis-idaea (Ericaceae), which is bird-dispersed, potentially over long distances. We sequenced three nuclear loci and one plastid DNA region in 130 individuals from 65 localities covering its entire geographic range, with a focus on its marginal populations in Japan. We found a homogenous genetic pattern across its enormous range based on the loci analysed, in contrast to the geographically structured variation found in a previous study of amplified fragment length polymorphisms in this species. However, we found several unique haplotypes in the Japanese populations, excluding the possibility that these marginal populations result from recent southward migration. Thus, even though V. vitis-idaea is efficiently dispersed via berries, our study suggests that its isolated populations in Japan have persisted during several cycles of cold and warm climate during the Pleistocene.


Assuntos
Variação Genética , Vaccinium vitis-Idaea/fisiologia , Animais , Regiões Árticas , Aves , Clima , DNA de Plantas/química , DNA de Plantas/genética , Haplótipos , Japão , Filogeografia , Dispersão Vegetal , Análise de Sequência de DNA , Vaccinium vitis-Idaea/genética
15.
Conserv Biol ; 28(2): 446-55, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24372820

RESUMO

Conservation of biodiversity may in the future increasingly depend upon the availability of scientific information to set suitable restoration targets. In traditional paleoecology, sediment-based pollen provides a means to define preanthropogenic impact conditions, but problems in establishing the exact provenance and ecologically meaningful levels of taxonomic resolution of the evidence are limiting. We explored the extent to which the use of sedimentary ancient DNA (sedaDNA) may complement pollen data in reconstructing past alpine environments in the tropics. We constructed a record of afro-alpine plants retrieved from DNA preserved in sediment cores from 2 volcanic crater sites in the Albertine Rift, eastern Africa. The record extended well beyond the onset of substantial anthropogenic effects on tropical mountains. To ensure high-quality taxonomic inference from the sedaDNA sequences, we built an extensive DNA reference library covering the majority of the afro-alpine flora, by sequencing DNA from taxonomically verified specimens. Comparisons with pollen records from the same sediment cores showed that plant diversity recovered with sedaDNA improved vegetation reconstructions based on pollen records by revealing both additional taxa and providing increased taxonomic resolution. Furthermore, combining the 2 measures assisted in distinguishing vegetation change at different geographic scales; sedaDNA almost exclusively reflects local vegetation, whereas pollen can potentially originate from a wide area that in highlands in particular can span several ecozones. Our results suggest that sedaDNA may provide information on restoration targets and the nature and magnitude of human-induced environmental changes, including in high conservation priority, biodiversity hotspots, where understanding of preanthropogenic impact (or reference) conditions is highly limited.


Assuntos
Altitude , Biodiversidade , Conservação dos Recursos Naturais/métodos , DNA de Plantas/análise , Fósseis , Sedimentos Geológicos/análise , Plantas/genética , Plantas/classificação , Ruanda
16.
Proc Natl Acad Sci U S A ; 108(16): 6520-5, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21402939

RESUMO

The proposed age of the striking biogeographic disjunction between the Arctic and southernmost South America varies from more than 65 million to a few thousand years, but no estimates based on explicit models and molecular data are available. Here we address the origin of bipolarity in crowberries (Empetrum), which are heath-forming dwarf shrubs with animal-dispersed fruits. We apply a fossil-calibrated relaxed molecular clock to model sequence evolution in two nuclear low-copy and two plastid DNA regions from 41 individual plants (420 clones for the nuclear regions) representing the entire geographic distribution of crowberries. The plastid region matK and four fossil calibration points were used to infer the ages of the crowberry stem and crown groups. All analyses resolved three major crowberry clades (A-C). Clade A contained sequences from the eastern Canadian pink-fruited crowberry (E. eamesii) as sister to clades B and C, which both contained sequences from the black-fruited northern hemisphere crowberry (E. nigrum). Clade B also contained a subclade with all sequences from the red-fruited southern hemisphere crowberry, which is often referred to as a distinct species, E. rubrum. Its closest relatives were consistently identified as black-fruited plants from northwestern North America. The median time to the most recent common ancestor for northern and southern hemisphere crowberries was estimated to 0.56-0.93 Ma, and 0.26-0.59 Ma for the southern plants only. We conclude that a single dispersal by a bird from northwestern North America to southernmost South America, taking place in the Mid-Pleistocene, is sufficient to explain the disjunction in crowberries.


Assuntos
Actinidia/fisiologia , Evolução Biológica , DNA de Plantas/genética , DNA Ribossômico/genética , Plastídeos/genética , Actinidia/classificação , Alaska , Sequência de Bases , Dados de Sequência Molecular , Filogeografia , América do Sul
17.
Artigo em Inglês | MEDLINE | ID: mdl-38503508

RESUMO

Surprisingly little attention has been given to the impact of selfing on speciation, even though selfing reduces gene flow between populations and affects other key population genetics parameters. Here we review recent theoretical work and compile empirical data from crossing experiments and genomic and phylogenetic studies to assess the effect of mating systems on the speciation process. In accordance with theoretical predictions, we find that accumulation of hybrid incompatibilities seems to be accelerated in selfers, but there is so far limited empirical support for a predicted bias toward underdominant loci. Phylogenetic evidence is scarce and contradictory, including studies suggesting that selfing either promotes or hampers speciation rate. Further studies are therefore required, which in addition to measures of reproductive barrier strength and selfing rate should routinely include estimates of demographic history and genetic divergence as a proxy for divergence time.

18.
Environ Microbiol ; 15(4): 1176-89, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23171292

RESUMO

The taxonomic and ecological diversity of ancient fungal communities was assessed by combining next generation sequencing and metabarcoding of DNA preserved in permafrost. Twenty-six sediment samples dated 16 000-32 000 radiocarbon years old from two localities in Siberia were analysed for fungal ITS. We detected 75 fungal OTUs from 21 orders representing three phyla, although rarefaction analyses suggested that the full diversity was not recovered despite generating an average of 6677 ± 3811 (mean ± SD) sequences per sample and that preservation bias likely has considerable effect on the recovered DNA. Most OTUs (75.4%) represented ascomycetes. Due to insufficient sequencing depth, DNA degradation and putative preservation biases in our samples, the recovered taxa probably do not represent the complete historic fungal community, and it is difficult to determine whether the fungal communities varied geographically or experienced a composition shift within the period of 16 000-32 000 bp. However, annotation of OTUs to functional ecological groups provided a wealth of information on the historic communities. About one-third of the OTUs are presumed plant-associates (pathogens, saprotrophs and endophytes) typical of graminoid- and forb-rich habitats. We also detected putative insect pathogens, coprophiles and keratinophiles likely associated with ancient insect and herbivore faunas. The detection of putative insect pathogens, mycoparasites, aquatic fungi and endophytes broadens our previous knowledge of the diversity of fungi present in Beringian palaeoecosystems. A large group of putatively psychrophilic/psychrotolerant fungi was also detected, most likely representing a modern, metabolically active fungal community.


Assuntos
DNA Fúngico/análise , Ecossistema , Fósseis , Fungos/classificação , Fungos/genética , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Regiões Árticas , Ascomicetos/genética , Código de Barras de DNA Taxonômico , Endófitos/genética , Insetos/microbiologia , Plantas/microbiologia , Sibéria , Especificidade da Espécie
19.
New Phytol ; 200(3): 898-910, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23869846

RESUMO

We provide the first comparative multispecies analysis of spatial genetic structure and diversity in the circumpolar Arctic using a common strategy for sampling and genetic analyses. We aimed to identify and explain potential general patterns of genetic discontinuity/connectivity and diversity, and to compare our findings with previously published hypotheses. We collected and analyzed 7707 samples of 17 widespread arctic-alpine plant species for amplified fragment length polymorphisms (AFLPs). Genetic structure, diversity and distinctiveness were analyzed for each species, and extrapolated to cover the geographic range of each species. The resulting maps were overlaid to produce metamaps. The Arctic and Atlantic Oceans, the Greenlandic ice cap, the Urals, and lowland areas between southern mountain ranges and the Arctic were the strongest barriers against gene flow. Diversity was highest in Beringia and gradually decreased into formerly glaciated areas. The highest degrees of distinctiveness were observed in Siberia. We conclude that large-scale general patterns exist in the Arctic, shaped by the Pleistocene glaciations combined with long-standing physical barriers against gene flow. Beringia served as both refugium and source for interglacial (re)colonization, whereas areas further west in Siberia served as refugia, but less as sources for (re)colonization.


Assuntos
Ecossistema , Fluxo Gênico , Camada de Gelo , Filogenia , Dispersão Vegetal/genética , Plantas/genética , Polimorfismo Genético , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Regiões Árticas , Oceano Atlântico , DNA de Cloroplastos/análise , Groenlândia , Haplótipos , Filogeografia , Sibéria
20.
Ann Bot ; 112(6): 1015-30, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23912698

RESUMO

BACKGROUND AND AIMS: Repeated hybridization and/or polyploidization confound classification and phylogenetic inference, and multiple colonizations at different time scales complicate biogeographical reconstructions. This study investigates whether such processes can explain long-term controversies in Anthoxanthum, and in particular its debated relationship to the genus Hierochloë, the evolution of its conspicuously diverse floral morphology, and the origins of its strikingly disjunct occurrences. A hypothesis for recurrent polyploid formation is proposed. METHODS: Three plastid (trnH-psbA, trnT-L and trnL-F) and two nuclear (ITS, ETS) DNA regions were sequenced in 57 accessions of 17 taxa (including 161 ETS clones) and Bayesian phylogenetic analyses were conducted. Divergence times were inferred in *BEAST using a strict molecular clock. KEY RESULTS: Anthoxanthum was inferred as monophyletic and sister to one species of Hierochloë based on the plastid data, whereas the nuclear data suggested that one section (Anthoxanthum section Anthoxanthum) is sister to a clade including the other section (Anthoxanthum section Ataxia) as sister to the genus Hierochloë. This could explain the variation in floral morphology; the aberrant characters in Ataxia seem to result from a Miocene hybridization event between one lineage with one fertile and two sterile florets (the Anthoxanthum lineage) and one which probably had three fertile florets as in extant Hierochloë. The distinct diploid A. gracile lineage originated in the Miocene; all other speciation events, many of them involving polyploidy, were dated to the Late Pliocene to Late Pleistocene. Africa was apparently colonized twice in the Late Pliocene (from the north to afro-alpine eastern Africa, and from south-east Asia to southern Africa), whereas Macaronesia was colonized much later (Late Pleistocene) by a diploid Mediterranean lineage. The widespread European tetraploid A. odoratum originated at least twice. CONCLUSIONS: Many of the controversies in Anthoxanthum can be explained by recurring hybridization and/or polyploidization on time scales ranging from the Miocene to the Late Pleistocene. All but one of the extant species shared most recent common ancestors in the Late Pliocene to the Late Pleistocene. The disjunct occurrences in Africa originated in the Late Pliocene via independent immigrations, whereas Macaronesia was colonized in the Late Pleistocene.


Assuntos
Evolução Molecular , Hibridização Genética , Poaceae/genética , África , Sequência de Bases , Teorema de Bayes , Núcleo Celular/genética , DNA de Plantas/química , DNA de Plantas/genética , Genes de Plantas/genética , Dados de Sequência Molecular , Filogenia , Filogeografia , Folhas de Planta/classificação , Folhas de Planta/genética , Plastídeos/genética , Poaceae/classificação , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA