Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(24): e2219031120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279263

RESUMO

Communication is a fundamental feature of animal societies and helps their members to solve the challenges they encounter, from exploiting food sources to fighting enemies or finding a new home. Eusocial bees inhabit a wide range of environments and they have evolved a multitude of communication signals that help them exploit resources in their environment efficiently. We highlight recent advances in our understanding of bee communication strategies and discuss how variation in social biology, such as colony size or nesting habits, and ecological conditions are important drivers of variation in communication strategies. Anthropogenic factors, such as habitat conversion, climate change, or the use of agrochemicals, are changing the world bees inhabit, and it is becoming clear that this affects communication both directly and indirectly, for example by affecting food source availability, social interactions among nestmates, and cognitive functions. Whether and how bees adapt their foraging and communication strategies to these changes represents a new frontier in bee behavioral and conservation research.


Assuntos
Aclimatação , Ecossistema , Animais , Abelhas , Comunicação
2.
J Exp Biol ; 227(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38853597

RESUMO

Social bees have evolved sophisticated communication systems to recruit nestmates to newly found food sources. As foraging ranges can vary from a few hundred meters to several kilometers depending on the environment or season, populations of social bee species living in different climate zones likely show specific adaptations in their recruitment communication. Accordingly, studies in the western honey bee, Apis mellifera, demonstrated that temperate populations exhibit shallower dance-calibration curves compared with tropical populations. Here, we report the first comparison of calibration curves for three Indian Apis cerana lineages: the tropical Apis indica, and the two montane Himalayan populations Apis cerana cerana (Himachal Pradesh) and Apis cerana kashmirensis (Jammu and Kashmir). We found that the colonies of the two montane A. cerana populations show dance-distance calibration curves with significantly shallower slopes than those of the tropical A. indica. Next, we transferred A. c. cerana colonies to Bangalore (∼ 2600 km away) to obtain calibration curves in the same location as A. indica. The common garden experiment confirmed this difference in slopes, implying that the lineages exhibit genetically fixed differences in dance-distance coding. However, the slopes of the calibration curves of the transferred A. c. cerana colonies were also significantly higher than those of the colonies tested in their original habitat, indicating an important effect of the environment. The differences in dance-distance coding between temperate and tropical A. cerana lineages resemble those described for Apis mellifera, suggesting that populations of both species independently evolved similar adaptations.


Assuntos
Comunicação Animal , Animais , Abelhas/fisiologia , Índia , Clima Tropical
3.
J Chem Ecol ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470528

RESUMO

Bumble bees are important pollinators in natural environments and agricultural farmlands, and they are in particular adapted to harsh environments like high mountain habitats. In these environments, animals are exposed to low temperature and face the risk of desiccation. The Eastern Himalayas are one of the recognized biodiversity hotspots worldwide. The area covers subtropical rainforest with warm temperature and high precipitation as well as high mountain ranges with peaks reaching up to 7,000 m, shaping a diverse floral and faunal community at the different elevational zones. To identify possible adaptation strategies, we investigated the cuticular hydrocarbon profiles of four bumble bee species occurring at different elevational ranges in Arunachal Pradesh, the northeastern most state in India. At 17 locations along an elevational gradient, we collected workers of two species from lower elevations (B. albopleuralis and B. breviceps; ~ 100 m - 3,000 m asl) and two species from higher elevations (B. prshewalskyi and B. mirus; ~ 2,800 m - 4,500 m asl). The CHC profiles of all four species showed a significant degree of variation in the composition of hydrocarbons, indicating species specificity. We also found clear correlation with elevation. The weighted mean chain length of the hydrocarbons significantly differed between the low and high elevation species, and the proportion of saturated hydrocarbons in CHC profiles significantly increased with the elevational range of the bumble bee species. Our results indicate that bumble bees living at high elevations reduce the risk of water loss by adapting their CHC composition on their cuticle, a phenomenon that has also been found in other insects like ants and fruit flies.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37624392

RESUMO

Honey bees communicate flight navigational information of profitable food to nestmates via their dance, a small-scale walking pattern, inside the nest. Hungry flies and honey bee foragers exhibit a sugar-elicited search involving path integration that bears a resemblance to dance behaviour. This study aimed to investigate the temporal dynamics of the initiation of sugar-elicited search and dance behaviour, using a comparative approach. Passive displacement experiments showed that feeding and the initiation of search could be spatially and temporally dissociated. Sugar intake increased the probability of initiating a search but the actual onset of walking triggers the path integration system to guide the search. When prevented from walking after feeding, flies and bees maintained their motivation for a path integration-based search for a duration of 3 min. In flies, turning and associated characters were significantly reduced during this period but remained higher than in flies without sugar stimulus. These results suggest that sugar elicits two independent behavioural responses: path integration and increased turning, with the initiation and duration of path integration system being temporally restricted. Honey bee dance experiments demonstrated that the motivation of foragers to initiate dance persisted for 15 min, while the number of circuits declined after 3 min following sugar ingestion. Based on these findings, we propose that food intake during foraging increases the probability to initiate locomotor behaviours involving the path integration system in both flies and honey bees, and this ancestral connection might have been co-opted and elaborated during the evolution of dance communication by honey bees.

5.
Proc Natl Acad Sci U S A ; 117(34): 20653-20661, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32778582

RESUMO

While the impact of air pollution on human health is well studied, mechanistic impacts of air pollution on wild systems, including those providing essential ecosystem services, are largely unknown, but directly impact our health and well-being. India is the world's largest fruit producer, second most populous country, and contains 9 of the world's 10 most polluted cities. Here, we sampled Giant Asian honey bees, Apis dorsata, at locations with varying air pollution levels in Bangalore, India. We observed significant correlations between increased respirable suspended particulate matter (RSPM) deposition and changes in bee survival, flower visitation, heart rate, hemocyte levels, and expression of genes related to lipid metabolism, stress, and immunity. Lab-reared Drosophila melanogaster exposed to these same sites also exhibited similar molecular and physiological differences. Our study offers a quantitative analysis on the current impacts of air pollution on insects, and indicates the urgency for more nonhuman studies to accurately assess the effects of pollution on our natural world.


Assuntos
Poluição do Ar/efeitos adversos , Abelhas/fisiologia , Polinização/fisiologia , Animais , Abelhas/efeitos dos fármacos , Cidades , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/fisiologia , Ecossistema , Estudos de Avaliação como Assunto , Humanos , Índia , Insetos/fisiologia , Material Particulado/efeitos adversos
6.
J Exp Biol ; 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795415

RESUMO

Honey bees estimate distances to food sources using image motion experienced on the flight path and they use this measure to tune the waggle phase duration in their dance communication. Most studies on the dance-related odometer are based on experiments with Apis mellifera foragers trained into small tunnels with black and white patterns which allowed quantifiable changes in the optic flow. In this study, we determined the calibration curves of two Asian honey bee species, A. florea and A. cerana, in two different natural environments with clear differences in the vegetation conditions and hence visual contrast. We found that the dense vegetation condition (with higher contrast) elicited a more rapid increase in the waggle phase duration with distance than the sparse vegetation in A. florea but not in A. cerana Our findings suggest that contrast sensitivity of the waggle dance odometer might vary among honey bee species.

7.
Anim Cogn ; 24(6): 1227-1235, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33907939

RESUMO

Slow-fast behavioral and life history differences have been tied to slow-fast variation in cognition that is part of the general speed-accuracy tradeoff. While there is growing evidence for such cognitive variation and its association with behavior and life history at the intraspecific level, it is unknown if a similar relationship extends to the interspecific level. Since interspecific differences in cognition have been shown to be a function of ecology and life history, such differences should be reflected in multiple traits that comprise the slow-fast cognitive axis. In this study, by measuring multiple cognitive traits in individuals, we tested for differences in the cognitive phenotype among four honeybee species, which differ in their behavior and life history in a manner that is associated with differences in their nesting ecology. Our results indicate that a set of cognitive traits consistently covary within each species, resulting in slow and fast cognitive phenotypes that largely meet the predictions of the speed-accuracy tradeoff. We also find that the four species group into two distinct clusters on a slow-fast cognitive axis, although their positions do not align with the known differences in their life history and nesting ecology. We instead find that cognitive differences among the four species are correlated with their brain size. We discuss the possible implications of these results for the role of ecology on slow-fast cognitive differences and the evolution of cognition.


Assuntos
Cognição , Ecologia , Animais , Abelhas , Fenótipo
8.
Brain Behav Evol ; 96(1): 13-25, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34265763

RESUMO

Sucrose represents an important carbohydrate source for most bee species. In the Western honeybee (Apis mellifera) it was shown that individual sucrose responsiveness correlates with the task performed in the colony, supporting the response threshold theory which states that individuals with the lowest threshold for a task-associated stimuli will perform the associated task. Tyramine was shown to modulate sucrose responsiveness, most likely via the tyramine 1 receptor. This receptor is located in brain areas important for the processing of gustatory stimuli. We asked whether the spatial expression pattern of the tyramine 1 receptor is a unique adaptation of honeybees or if its expression represents a conserved trait. Using a specific tyramine receptor 1 antibody, we compared the spatial expression of this receptor in the brain of different corbiculate bee species, including eusocial honeybees, bumblebees, stingless bees, and the solitary bee Osmia bicornis as an outgroup. We found a similar labeling pattern in the mushroom bodies, the central complex, the dorsal lobe, and the gnathal ganglia, indicating a conserved receptor expression. With respect to sucrose responsiveness this result is of special importance. We assume that the tyramine 1 receptor expression in these neuropiles provides the basis for modulation of sucrose responsiveness. Furthermore, the tyramine 1 receptor expression seems to be independent of size, as labeling is similar in bee species that differ greatly in their body size. However, the situation in the optic lobes appears to be different. Here, the lobula of stingless bees is clearly labeled by the tyramine receptor 1 antibody, whereas this labeling is absent in other species. This indicates that the regulation of this receptor is different in the optic lobes, while its function in this neuropile remains unclear.


Assuntos
Receptores de Amina Biogênica , Animais , Abelhas , Encéfalo/metabolismo , Corpos Pedunculados , Receptores de Amina Biogênica/metabolismo , Tiramina
9.
Proc Biol Sci ; 287(1922): 20200190, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32126959

RESUMO

Efficient communication is highly important for the evolutionary success of social animals. Honeybees (genus Apis) are unique in that they communicate the spatial information of resources using a symbolic 'language', the waggle dance. Different honeybee species differ in foraging ecology but it remains unknown whether this shaped variation in the dance. We studied distance dialects-interspecific differences in how waggle duration relates to flight distance-and tested the hypothesis that these evolved to maximize communication precision over the bees' foraging ranges. We performed feeder experiments with Apis cerana, A. florea and A. dorsata in India and found that A. cerana had the steepest dialect, i.e. a rapid increase in waggle duration with increasing feeder distance, A. florea had an intermediate, and A. dorsata had the lowest dialect. By decoding dances for natural food sites, we inferred that the foraging range was smallest in A. cerana, intermediate in A. florea and largest in A. dorsata. The inverse correlation between foraging range and dialect was corroborated when comparing six (sub)species across the geographical range of the genus including previously published data. We conclude that dance dialects constitute adaptations resulting from a trade-off between the spatial range and the spatial accuracy of communication.


Assuntos
Adaptação Fisiológica , Comunicação Animal , Abelhas , Animais , Índia , Atividade Motora
10.
J Exp Biol ; 223(Pt 12)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32393545

RESUMO

We performed an RNA-seq-based comparison of gene expression levels in the antennae of honey bee drones and time-trained foragers (workers) collected at different times of the day and different activity states. Interestingly, olfaction-related genes [i.e. odorant receptor (Or) genes, odorant binding protein (Obp) genes, carboxyl esterase (CEst) genes, etc.] showed stable gene expression differences between drone and worker antennae. Drone antennae showed higher expression of 24 Or genes, of which 21 belong to the clade X which comprises the receptor for the major queen pheromone compound 9-ODA. This high number of drone-biased Or genes suggests that more than previously thought play a role in sex-pheromone communication. In addition, we found higher expression levels for many non-olfaction-related genes including nitric oxide synthase (NOS), and the potassium channel Shaw In contrast, workers showed higher expression of 67 Or genes, which belong to different Or clades that are involved in pheromone communication as well as the perception of cuticular hydrocarbons and floral scents. Further, drone antennae showed higher expression of genes involved in energy metabolism, whereas worker antennae showed higher expression of genes involved in neuronal communication, consistent with earlier reports on peripheral olfactory plasticity. Finally, drones that perform mating flight in the afternoon (innate) and foragers that are trained to forage in the afternoon (adapted) showed similar daily changes in the expression of two major clock genes, period and cryptochrome2 Most of the other genes showing changes with time or onset of daily flight activity were specific to drones and foragers.


Assuntos
Feromônios , Olfato , Animais , Antenas de Artrópodes , Abelhas/genética , Feminino , Expressão Gênica , Masculino
11.
Cell Mol Life Sci ; 76(4): 637-651, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30349993

RESUMO

Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying complex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research directions.


Assuntos
Encéfalo/metabolismo , Genes Precoces/genética , Genes de Insetos/genética , Insetos/genética , Plasticidade Neuronal/genética , Comportamento Social , Animais , Abelhas/genética , Abelhas/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Expressão Gênica , Insetos/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia
12.
J Exp Biol ; 222(Pt 11)2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31097604

RESUMO

Honey bees can communicate navigational information which makes them unique amongst all prominent insect navigators. Returning foragers recruit nest mates to a food source by communicating flight distance and direction using a small scale walking pattern: the waggle dance. It is still unclear how bees transpose flight information to generate corresponding dance information. In single feeder shift experiments, we monitored for the first time how individual bees update dance duration after a shift of feeder distance. Interestingly, the majority of bees (86%) needed two or more foraging trips to update dance duration. This finding demonstrates that transposing flight navigation information to dance information is not a reflexive behavior. Furthermore, many bees showed intermediate dance durations during the update process, indicating that honey bees highly likely use two memories: (i) a recently acquired navigation experience and (ii) a previously stored flight experience. Double-shift experiments, in which the feeder was moved forward and backward, created an experimental condition in which honey bee foragers did not update dance duration; suggesting the involvement of more complex memory processes. Our behavioral paradigm allows the dissociation of foraging and dance activity and opens the possibility of studying the molecular and neural processes underlying the waggle dance behavior.


Assuntos
Comunicação Animal , Abelhas/fisiologia , Navegação Espacial , Animais , Comportamento Apetitivo , Memória Espacial
14.
J Exp Biol ; 220(Pt 18): 3231-3237, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28684466

RESUMO

Foraging behavior is essential for all organisms to find food containing nutritional chemicals. A hungry Drosophila melanogaster fly performs local searching behavior after drinking a small amount of sugar solution. Using video tracking, we examined how the searching behavior is regulated in D. melanogaster We found that a small amount of highly concentrated sugar solution induced a long-lasting searching behavior. After the intake of sugar solution, a fly moved around in circles and repeatedly returned to the position where the sugar droplet had been placed. The non-nutritious sugar d-arabinose, but not the non-sweet nutritious sugar d-sorbitol, was effective in inducing the behavior, indicating that sweet sensation is essential. Furthermore, pox-neuro mutant flies, which have no external taste bristles, showed local searching behavior, suggesting the involvement of the pharyngeal taste organ. Experimental activation of pharyngeal sugar-sensitive gustatory receptor neurons by capsaicin using the GAL4/UAS system induced local searching behavior. In contrast, inhibition of pharyngeal sugar-responsive gustatory receptor neurons abolished the searching behavior. Together, our results indicate that, in Drosophila, the pharyngeal taste-receptor neurons trigger searching behavior immediately after ingestion.


Assuntos
Arabinose/metabolismo , Drosophila melanogaster/fisiologia , Glucose/metabolismo , Sensilas/fisiologia , Percepção Gustatória/fisiologia , Animais , Comportamento Apetitivo , Comportamento Alimentar , Masculino
15.
Bioengineered ; 14(1): 2252669, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37642337

RESUMO

Edible insects play an important role in human health and food security. Among those, the Giant water bug, Lethocerus indicus (Lep.& Ser.) is a widely used edible insect known for its aroma, flavor, and therapeutic purposes. In the present study, we investigated the nutritional profile, natural habitat, and feeding behavior of L. indicus in aquarium conditions. A comparative analysis of male and female insects' aroma contents and fatty acid (FA) profiles was also conducted. A dry fried male insect yielded volatile oil of 0.96%/2 g body weight, whereas a dry fried female yielded 0.48%/5.36 g of body weight. In terms of lipids, fresh male insects had 0.15%/5.42 g of body weight and fresh female insects had 0.28%/9.48 g of body weight. There are 24 volatile compounds specific to males, 37 specific to females, and 13 commons to both were identified. 2-Hexen-1-ol, acetate, (Z)- which smells like banana, was prevalently found in males while 4-Octene, 2,6-dimethyl-, [S-(Z)] was prevalently found in female insects. Fatty acids profile analysis detected 32 FA with 12 unique FA from males whereas 22 FA and 3 unique FA were identified from female insects. The SFA percentage present in males and females was 77.44% and 85.21%. Males had 6.78% MUFA content while females have 4.75%. Males have 18% PUFA content enriched with DHA, and EPA, while females had 10.04%. This study revealed that with the presence of a banana-like smell of volatile compound and more MUFA and PUFA in males, the native people of North-East India preferred male over female insects for entomophagy.


Assuntos
Insetos Comestíveis , Valor Nutritivo , Animais , Feminino , Masculino , Peso Corporal , Comportamento Alimentar , Índia
16.
J Vis Exp ; (201)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38047573

RESUMO

Foraging behavior is essential for the survival of organisms as it enables them to locate and acquire essential food resources. In Drosophila, hunger triggers a distinct search behavior following the consumption of small quantities of a sugar solution. This report presents a simple experimental setup to study sugar-elicited search behavior with the aim of uncovering the underlying mechanisms. Minute quantities of concentrated sugar solution elicit sustained searching behavior in flies. The involvement of path integration in this behavior has been established, as flies utilize their trajectory to return to the sugar location. The most recent findings provide evidence of temporal modulation in the initiation and intensity of the search behavior after sugar intake. We have also used this setup for artificial activation of specific taste-receptor neurons in the pharynx, which elicits the search behavior. The Drosophila neurogenetic toolkit offers a diverse array of tools and techniques that can be combined with the sugar-elicited search behavior paradigm to study the neural and genetic mechanisms underlying foraging. Understanding the neural basis of hunger-driven searching behavior in flies contributes to the field of neurobiology as a whole, offering insights into the regulatory mechanisms that govern feeding behaviors not only in other organisms but also in humans.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Drosophila/fisiologia , Açúcares , Carboidratos , Comportamento Alimentar/fisiologia , Comportamento Apetitivo , Drosophila melanogaster/fisiologia
17.
Proc Natl Acad Sci U S A ; 106(7): 2383-8, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19179284

RESUMO

The honey bee genome predicts approximately 100 peptides from 36 prohormones, but the functions of many of these peptides are unknown. We used differential isotope labeling combined with mass spectrometric analysis to quantify approximately 50% of known bee brain peptides in the context of foraging, with 8 showing robust and dynamic regulation. Some showed differences in brain abundance as a function of experience; specifically, nectar and pollen collection led to quick changes in abundance. These changes were related to the act of food collection, not ingestion, because foragers bring food back to the hive for storage rather than eating it themselves. Other peptide differences in brain abundance were seen in bees that either flew to a nectar feeder or a pollen feeder, but did not yet collect any food. These differences likely reflect well-known predispositions of some bees to collect either nectar or pollen, but not both. Tachykinin, PBAN, and sNPF were among the peptides with the strongest changes in association with nectar and pollen foraging. These peptides are known to be involved in regulating food intake in solitary insects, suggesting an evolutionary connection between that behavior and social foraging. These results demonstrate that it is now possible to use quantitative peptidomics to help determine which brain peptides are bioactive and to elucidate their function in the regulation of behavior.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Comportamento Alimentar/fisiologia , Peptídeos/química , Proteômica/métodos , Animais , Abelhas , Hormônios/metabolismo , Espectrometria de Massas/métodos , Modelos Biológicos , Neuropeptídeos/química , Pólen , Taquicininas/metabolismo
18.
PLoS One ; 17(7): e0271745, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35901097

RESUMO

Cuticular hydrocarbons (CHC) are known to serve as discrimination cues and will trigger defence behaviour in a plethora of eusocial insects. However, little is known how about nestmate recognition ability selects for CHC diversification. In this study we investigate differences in CHC composition of four major honey bee species with respect to the differences in their nesting behavior. In contrast to A. mellifera, A. cerana and A. florea, the giant honey bee A. dorsata prefers to build their nests in aggregations with very small spatial distances between nests, which increases the probability of intrusions. Thus, A. dorsata exhibits a particularly challenging nesting behavior which we hypothesize should be accompanied with an improved nestmate recognition system. Comparative analyses of the worker CHC profiles indicate that A. dorsata workers exhibit a unique and more complex CHC profile than the other three honey bee species. This increased complexity is likely based on a developmental process that retains the capability to synthesize methyl-branched hydrocarbons as adults. Furthermore, two sets of behavioral experiments provide evidence that A. dorsata shows an improved nestmate discrimination ability compared to the phylogenetically ancestral A. florea, which is also open-nesting but does not form nest aggregations. The results of our study suggest that ecological traits like nesting in aggregation might be able to drive CHC profile diversification even in closely related insect species.


Assuntos
Hidrocarbonetos , Comportamento de Nidação , Animais , Abelhas , Sinais (Psicologia)
19.
Front Insect Sci ; 1: 664978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38468879

RESUMO

In honey bees search behavior occurs as social and solitary behavior. In the context of foraging, searching for food sources is performed by behavioral specialized foragers, the scouts. When the scouts have found a new food source, they recruit other foragers (recruits). These recruits never search for a new food source on their own. However, when the food source is experimentally removed, they start searching for that food source. Our study provides a detailed description of this solitary search behavior and the variation of this behavior among individual foragers. Furthermore, mass spectrometric measurement showed that the initiation and performance of this solitary search behavior is associated with changes in glutamate, GABA, histamine, aspartate, and the catecholaminergic system in the optic lobes and central brain area. These findings strikingly correspond with the results of an earlier study that showed that scouts and recruits differ in the expression of glutamate and GABA receptors. Together, the results of both studies provide first clear support for the hypothesis that behavioral specialization in honey bees is based on adjusting modulatory systems involved in solitary behavior to increase the probability or frequency of that behavior.

20.
PLoS One ; 16(10): e0258604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34679112

RESUMO

The giant honey bee Apis dorsata is unusual in being able to forage during both the day and the night. To date, the extent of this unique nocturnal foraging behavior and the environmental factors correlating with it have not been deeply investigated. We conducted the first systematic investigation into the nocturnal behavior of A. dorsata in Southern India by tracking the daily and nightly foraging activity of A. dorsata colonies in an urban environment for 8 months, over multiple seasons and lunar cycles. We found strong evidence that A. dorsata can behave in a manner that is "cathemeral" (active over the entire diel cycle) when environmental illumination is sufficient for nocturnal flight. However, workers were not always active even when the environment should have been bright enough for them to forage, suggesting that their nocturnal foraging behavior was also affected by seasonal changes in resource availability. The foraging activity observed during the day versus twilight versus night differed between seasons; notably, nocturnal activity rates were higher than diurnal activity rates during the winter. We found that at our study site A. dorsata routinely exhibits both diurnal and crepuscular activity, foraging just as intensely during the short twilight hours as during the day. The high foraging activity observed during the twilight and nighttime hours shows that A. dorsata colonies can extend their foraging beyond the daylight hours and reveals that foraging during these dimly lit hours is an integral part of their foraging ecology. This evidence of the importance of nocturnal and crepuscular foraging by A. dorsata paves the way for future studies examining the role of this species in nocturnal pollination networks, the contribution of nocturnal foraging to colony-level nutrition and energy budget, and the evolution of this unusual behavior. Future work comparing nocturnal activity in light polluted urban environments versus unpolluted natural environments is particularly encouraged to determine the generalizability of these findings.


Assuntos
Abelhas , Comportamento Animal , Animais , Abelhas/fisiologia , Comportamento Animal/fisiologia , Ritmo Circadiano , Índia , Lua , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA