Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 19(1): 182, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926464

RESUMO

BACKGROUND: Clinically relevant glioma subtypes, such as the glioma-CpG island methylator phenotype (G-CIMP), have been defined by epigenetics. In this study, the role of long non-coding RNAs in association with the poor-prognosis G-CMIP-low phenotype and the good-prognosis G-CMIP-high phenotype was investigated. Functional associations of lncRNAs with mRNAs and miRNAs were examined to hypothesize influencing factors of the aggressive phenotype. METHODS: RNA-seq data on 250 samples from TCGA's Pan-Glioma study, quantified for lncRNA and mRNAs (GENCODE v28), were analyzed for differential expression between G-CIMP-low and G-CIMP-high phenotypes. Functional interpretation of the differential lncRNAs was performed by Ingenuity Pathway Analysis. Spearman rank order correlation estimates between lncRNA, miRNA, and mRNA nominated differential lncRNA with a likely miRNA sponge function. RESULTS: We identified 4371 differentially expressed features (mRNA = 3705; lncRNA = 666; FDR ≤ 5%). From these, the protein-coding gene TP53 was identified as an upstream regulator of differential lncRNAs PANDAR and PVT1 (p = 0.0237) and enrichment was detected in the "development of carcinoma" (p = 0.0176). Two lncRNAs (HCG11, PART1) were positively correlated with 342 mRNAs, and their correlation estimates diminish after adjusting for either of the target miRNAs: hsa-miR-490-3p, hsa-miR-129-5p. This suggests a likely sponge function for HCG11 and PART1. CONCLUSIONS: These findings identify differential lncRNAs with oncogenic features that are associated with G-CIMP phenotypes. Further investigation with controlled experiments is needed to confirm the molecular relationships.


Assuntos
Glioma , MicroRNAs , RNA Longo não Codificante , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioma/genética , Humanos , MicroRNAs/genética , Fenótipo , RNA Longo não Codificante/genética
2.
Nanomedicine ; 13(2): 421-429, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27720990

RESUMO

Contradictory results in clinical trials are preventing the advancement and implementation of cell-based therapy. To explain such results, there is a need to uncover the mystery regarding the fate of the transplanted cells. To answer this need, we developed a technique for noninvasive in vivo cell tracking, which uses gold nanoparticles as contrast agents for CT imaging. Herein, we investigate the design principles of this technique for intramuscular transplantation of therapeutic cells. Longitudinal studies were performed, displaying the ability to track cells over long periods of time. As few as 500 cells could be detected and a way to quantify the number of cells visualized by CT was demonstrated. Moreover, monitoring of cell functionality was demonstrated on a mouse model of Duchenne muscular dystrophy. This cell-tracking technology has the potential to become an essential tool in pre-clinical as well as clinical trials and to advance the future of cell therapy.


Assuntos
Rastreamento de Células , Nanopartículas , Tomografia Computadorizada por Raios X/métodos , Animais , Meios de Contraste , Modelos Animais de Doenças , Ouro , Camundongos , Distrofia Muscular de Duchenne
3.
Dis Model Mech ; 17(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38501170

RESUMO

Reliable disease models are critical for medicine advancement. Here, we established a versatile human disease model system using patient-derived extracellular vesicles (EVs), which transfer a pathology-inducing cargo from a patient to a recipient naïve model organism. As a proof of principle, we applied EVs from the serum of patients with muscular dystrophy to Caenorhabditis elegans and demonstrated their capability to induce a spectrum of muscle pathologies, including lifespan shortening and robust impairment of muscle organization and function. This demonstrates that patient-derived EVs can deliver disease-relevant pathologies between species and can be exploited for establishing novel and personalized models of human disease. Such models can potentially be used for disease diagnosis, prognosis, analyzing treatment responses, drug screening and identification of the disease-transmitting cargo of patient-derived EVs and their cellular targets. This system complements traditional genetic disease models and enables modeling of multifactorial diseases and of those not yet associated with specific genetic mutations.


Assuntos
Proteínas de Caenorhabditis elegans , Vesículas Extracelulares , Distrofia Muscular de Duchenne , Animais , Humanos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Distrofia Muscular de Duchenne/genética , Músculos
4.
Cells ; 12(15)2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37566001

RESUMO

Glioblastoma (GBM) is the most common and aggressive primary brain tumor. GBM contains a small subpopulation of glioma stem cells (GSCs) that are implicated in treatment resistance, tumor infiltration, and recurrence, and are thereby considered important therapeutic targets. Recent clinical studies have suggested that the choice of general anesthetic (GA), particularly propofol, during tumor resection, affects subsequent tumor response to treatments and patient prognosis. In this study, we investigated the molecular mechanisms underlying propofol's anti-tumor effects on GSCs and their interaction with microglia cells. Propofol exerted a dose-dependent inhibitory effect on the self-renewal, expression of mesenchymal markers, and migration of GSCs and sensitized them to both temozolomide (TMZ) and radiation. At higher concentrations, propofol induced a large degree of cell death, as demonstrated using microfluid chip technology. Propofol increased the expression of the lncRNA BDNF-AS, which acts as a tumor suppressor in GBM, and silencing of this lncRNA partially abrogated propofol's effects. Propofol also inhibited the pro-tumorigenic GSC-microglia crosstalk via extracellular vesicles (EVs) and delivery of BDNF-AS. In conclusion, propofol exerted anti-tumor effects on GSCs, sensitized these cells to radiation and TMZ, and inhibited their pro-tumorigenic interactions with microglia via transfer of BDNF-AS by EVs.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Glioma , Propofol , RNA Longo não Codificante , Humanos , Neoplasias Encefálicas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Glioblastoma/metabolismo , Glioma/metabolismo , Microglia/metabolismo , Células-Tronco Neoplásicas/patologia , Propofol/farmacologia , RNA Longo não Codificante/genética , Temozolomida/farmacologia
5.
Biochim Biophys Acta ; 1813(12): 2108-17, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21824498

RESUMO

Previous studies have shown that human prostate cancer cells constitutively generate 5-lipoxygenase (5-LOX) metabolites from arachidonic acid, and inhibition of 5-LOX blocks production of 5-LOX metabolites and triggers apoptosis in prostate cancer cells. This apoptosis is prevented by exogenous metabolites of 5-LOX, suggesting an essential role of 5-LOX metabolites in the survival of prostate cancer cells. However, downstream signaling mechanisms which mediate the survival-promoting effects of 5-LOX metabolites in prostate cancer cells are still unknown. Recently, we reported that MK591, a specific inhibitor of 5-LOX activity, induces apoptosis in prostate cancer cells without inhibition of Akt, or ERK, two well-characterized regulators of pro-survival mechanisms, suggesting the existence of an Akt and ERK-independent survival mechanism in prostate cancer cells regulated by 5-LOX. Here, we report that 5-LOX inhibition-induced apoptosis in prostate cancer cells occurs via rapid inactivation of protein kinase C-epsilon (PKCε), and that exogenous 5-LOX metabolites prevent both 5-LOX inhibition-induced down-regulation of PKCε and induction of apoptosis. Interestingly, pre-treatment of prostate cancer cells with diazoxide (a chemical activator of PKCε), or KAE1-1 (a cell-permeable, octa-peptide specific activator of PKCε) prevents 5-LOX inhibition-induced apoptosis, which indicates that inhibition of 5-LOX triggers apoptosis in prostate cancer cells via down-regulation of PKCε. Altogether, these findings suggest that metabolism of arachidonic acid by 5-LOX activity promotes survival of prostate cancer cells via signaling through PKCε, a pro-survival serine/threonine kinase.


Assuntos
Apoptose , Araquidonato 5-Lipoxigenase/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Lipoxigenase/farmacologia , Neoplasias da Próstata/patologia , Proteína Quinase C-épsilon/antagonistas & inibidores , Western Blotting , Regulação para Baixo , Eicosanoides/farmacologia , Citometria de Fluxo , Humanos , Imunoprecipitação , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
6.
J Cell Biochem ; 113(6): 2064-76, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22271577

RESUMO

The liver is a major insulin-responsive tissue responsible for glucose regulation. One important mechanism in this phenomenon is insulin-induced glycogen synthesis. Studies in our laboratory have shown that protein kinase Cs delta (PKCδ) and alpha (α) have important roles in insulin-induced glucose transport in skeletal muscle, and that their expression and activity are regulated by insulin. Their importance in glucose regulation in liver cells is unclear. In this study we investigated the possibility that these isoforms are involved in the mediation of insulin-induced glycogen synthesis in hepatocytes. Studies were done on rat hepatocytes in primary culture and on the AML-12 (alpha mouse liver) cell line. Insulin increased activity and tyrosine phosphorylation of PKCδ within 5 min. In contrast, activity and tyrosine phosphorylation of PKCα were not increased by insulin. PKCδ was constitutively associated with IR, and this was increased by insulin stimulation. Suppression of PKCδ expression by transfection with RNAi, or overexpression of kinase dead (dominant negative) PKCδ reduced both the insulin-induced activation of PKB/Akt and the phosphorylation of glycogen synthase kinase 3 (GSK3) and reduced significantly insulin-induced glucose uptake. In addition, treatment of primary rat hepatocytes with rottlerin abrogated insulin-induced increase in glycogen synthesis. Neither overexpression nor inhibition of PKCα appeared to alter activation of PKB, phosphorylation of GSK3 or glucose uptake in response to insulin. We conclude that PKCδ, but not PKCα, plays an essential role in insulin-induced glucose uptake and glycogenesis in hepatocytes.


Assuntos
Glucose/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Acetofenonas/farmacologia , Animais , Benzopiranos/farmacologia , Células Cultivadas , Glicogênio/biossíntese , Quinase 3 da Glicogênio Sintase/metabolismo , Hepatócitos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Músculo Esquelético/metabolismo , Fosforilação , Proteína Quinase C-alfa/genética , Proteína Quinase C-delta/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Ratos , Ratos Wistar , Transdução de Sinais
7.
Mol Cancer ; 11: 20, 2012 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-22480225

RESUMO

BACKGROUND: The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ), followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent. In glioma, SPARC promotes invasion via upregulation of the p38 MAPK/MAPKAPK2/HSP27 signaling pathway, and promotes tumor cell survival by upregulating pAKT. As HSP27 and AKT interact to regulate the activity of each other, we determined whether inhibition of HSP27 was better than targeting SPARC as a therapeutic approach to inhibit both SPARC-induced glioma cell invasion and survival. RESULTS: Our studies found the following. 1) SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2) Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3) Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4) Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5) However, inhibiting pAKT suppresses tumor cell survival. 6) Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7) There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8) This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1) SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2) Despite this enhanced signaling, SPARC protects cells against TMZ. 3) This protection can be reduced by inhibiting pAKT. 4) Combined inhibition of HSP27 and pAKT is more effective than TMZ treatment alone. CONCLUSIONS: We conclude that inhibition of HSP27 alone, or in combination with pAKT inhibitor IV, may be an effective therapeutic approach to inhibit SPARC-induced glioma cell invasion and survival in SPARC-positive/PTEN-wildtype and SPARC-positive/PTEN-null tumors, respectively.


Assuntos
Proteínas de Choque Térmico HSP27/metabolismo , Osteonectina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Linhagem Celular Tumoral , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Glioma , Proteínas de Choque Térmico HSP27/genética , Humanos , Osteonectina/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno , Temozolomida
8.
Cureus ; 14(10): e30075, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36381732

RESUMO

Introduction Cocaine use during pregnancy can affect fetal brain development. A fetal brain injury could happen from the direct effect of cocaine on the developing brain or from the reduction of placental perfusion from vasoconstriction, which may lead to hypoxia-ischemia. A potential mechanism for brain injury could be due to a neurotransmitter imbalance within the brain, especially glutamate. In an immature rat brain synaptosome model, we explored the additive effect of cocaine alone on glutamate release and the effect of cocaine combined with simulated hypoxic depolarization using potassium as a surrogate. Method Rat pups' brains were dissected and placed on a chilled petri dish. They then entered the experimental protocol. The suspended synaptosomes were divided equally into four experimental groups (control, high potassium "surrogate to hypoxic stimulation," cocaine, and cocaine + high K). Reversed-phase high-performance liquid chromatography analyzed glutamate with fluorescent detection Results The glutamate level was lowest in the cocaine-only group, with a level of 1.96 × 104, compared to the control and high potassium group. However, combining cocaine with high potassium seemed to generate a synergistic effect, achieving the highest glutamate level of all groups with a value of 5.31 × 104. Post hoc Conover's test for multiple pairwise-comparison between groups was done. In comparing various solutions to control, we did not find a statistically significant difference with the cocaine-only solution with a p-value of 0.074. Also, on comparing various other solutions to each other, there was no statistically significant difference between cocaine vs. cocaine + high potassium a p-value of 0.074. Conclusion Our data support the conclusion that cocaine alone does not induce glutamate release from fetal rat brain synaptosomes. Exposure to high potassium does lead to glutamate release. However, cocaine greatly enhances glutamate release in the presence of high potassium levels. This could explain how cocaine affects brain maturation during pregnancy with a low oxygen tension environment in the placenta. This hypothesis should be tested in vivo.

9.
Biochim Biophys Acta ; 1803(11): 1265-75, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20708645

RESUMO

Insulin rapidly upregulates protein levels of PKCδ in classical insulin target tissues skeletal muscle and liver. Insulin induces both a rapid increase in de novo synthesis of PKCδ protein. In this study we examined the possibility that insulin may also inhibit degradation of PKCδ. Experiments were performed on L6 skeletal muscle myoblasts or myotubes in culture. Phorbol ester (PMA)- and insulin-induced degradation of PKCδ were abrogated by proteasome inhibition. Both PMA and insulin induced ubiquitination of PKCδ, but not of that PKCα or PKCε and increased proteasome activity within 5 min. We examined the role of tyrosine phosphorylation of PKCδ in targeting PKCδ for degradation by the ubiquitin-proteasome pathway. Transfection of cells with PKCδY(311)F, which is not phosphorylated, resulted in abolition of insulin-induced ubiquitination of PKCδ and increase in proteasome activity. We conclude that insulin induces degradation of PKCδ via the ubiquitin-proteasome system, and that this effect requires phosphorylation on specific tyrosine residues for targeting PKCδ for degradation by the ubiquitin-proteasome pathway. These studies provide additional evidence for unique effects of insulin on regulation of PKCδ protein levels.


Assuntos
Insulina/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Quinase C-delta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitina/metabolismo , Substituição de Aminoácidos , Animais , Western Blotting , Linhagem Celular , Inibidores de Cisteína Proteinase/farmacologia , Hipoglicemiantes/farmacologia , Leupeptinas/farmacologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteassoma , Proteína Quinase C-delta/genética , Acetato de Tetradecanoilforbol/farmacologia , Tirosina/genética , Tirosina/metabolismo , Ubiquitinação/efeitos dos fármacos
10.
Elife ; 102021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34355696

RESUMO

Inactivating mutations in the Methyl-CpG Binding Protein 2 (MECP2) gene are the main cause of Rett syndrome (RTT). Despite extensive research into MECP2 function, no treatments for RTT are currently available. Here, we used an evolutionary genomics approach to construct an unbiased MECP2 gene network, using 1028 eukaryotic genomes to prioritize proteins with strong co-evolutionary signatures with MECP2. Focusing on proteins targeted by FDA-approved drugs led to three promising targets, two of which were previously linked to MECP2 function (IRAK, KEAP1) and one that was not (EPOR). The drugs targeting these three proteins (Pacritinib, DMF, and EPO) were able to rescue different phenotypes of MECP2 inactivation in cultured human neural cell types, and appeared to converge on Nuclear Factor Kappa B (NF-κB) signaling in inflammation. This study highlights the potential of comparative genomics to accelerate drug discovery, and yields potential new avenues for the treatment of RTT.


Assuntos
Proteína 2 de Ligação a Metil-CpG/uso terapêutico , Síndrome de Rett/terapia , Genômica , Humanos , Síndrome de Rett/genética
12.
Front Cell Dev Biol ; 9: 691648, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604212

RESUMO

Background: There is a compelling evidence from animal models that early exposure to clinically relevant general anesthetics (GAs) interferes with brain development, resulting in long-lasting cognitive impairments. Human studies have been inconclusive and are challenging due to numerous confounding factors. Here, we employed primary human neural cells to analyze ketamine neurotoxic effects focusing on the role of glial cells and their activation state. We also explored the roles of astrocyte-derived extracellular vesicles (EVs) and different components of the brain-derived neurotrophic factor (BDNF) pathway. Methods: Ketamine effects on cell death were analyzed using live/dead assay, caspase 3 activity and PARP-1 cleavage. Astrocytic and microglial cell differentiation was determined using RT-PCR, ELISA and phagocytosis assay. The impact of the neuron-glial cell interactions in the neurotoxic effects of ketamine was analyzed using transwell cultures. In addition, the role of isolated and secreted EVs in this cross-talk were studied. The expression and function of different components of the BDNF pathway were analyzed using ELISA, RT-PCR and gene silencing. Results: Ketamine induced neuronal and oligodendrocytic cell apoptosis and promoted pro-inflammatory astrocyte (A1) and microglia (M1) phenotypes. Astrocytes and microglia enhanced the neurotoxic effects of ketamine on neuronal cells, whereas neurons increased oligodendrocyte cell death. Ketamine modulated different components in the BDNF pathway: decreasing BDNF secretion in neurons and astrocytes while increasing the expression of p75 in neurons and that of BDNF-AS and pro-BDNF secretion in both neurons and astrocytes. We demonstrated an important role of EVs secreted by ketamine-treated astrocytes in neuronal cell death and a role for EV-associated BDNF-AS in this effect. Conclusions: Ketamine exerted a neurotoxic effect on neural cells by impacting both neuronal and non-neuronal cells. The BDNF pathway and astrocyte-derived EVs represent important mediators of ketamine effects. These results contribute to a better understanding of ketamine neurotoxic effects in humans and to the development of potential approaches to decrease its neurodevelopmental impact.

13.
Cancers (Basel) ; 13(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916466

RESUMO

Glioblastoma multiforme (GBM) is the most lethal subtype of glioma. Cannabis sativa is used for the treatment of various medical conditions. Around 150 phytocannabinoids have been identified in C. sativa, among them Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) that trigger GBM cell death. However, the optimal combinations of cannabis molecules for anti-GBM activity are unknown. Chemical composition was determined using high-performance liquid chromatography (HPLC) and gas chromatography mass spectrometry (GC/MS). Cytotoxic activity was determined by XTT and lactate dehydrogenase (LDH) assays and apoptosis and cell cycle by fluorescence-activated cell sorting (FACS). F-actin structures were observed by confocal microscopy, gene expression by quantitative PCR, and cell migration and invasion by scratch and transwell assays, respectively. Fractions of a high-THC cannabis strain extract had significant cytotoxic activity against GBM cell lines and glioma stem cells derived from tumor specimens. A standard mix (SM) of the active fractions F4 and F5 induced apoptosis and expression of endoplasmic reticulum (ER)-stress associated-genes. F4 and F5 inhibited cell migration and invasion, altered cell cytoskeletons, and inhibited colony formation in 2 and 3-dimensional models. Combinations of cannabis compounds exert cytotoxic, anti-proliferative, and anti-migratory effects and should be examined for efficacy on GBM in pre-clinical studies and clinical trials.

14.
Crit Care Explor ; 2(12): e0291, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33251520

RESUMO

OBJECTIVES: To determine if patients with coronavirus disease 2019 had a greater number of unplanned extubations resulting in reintubations than in patients without coronavirus disease 2019. DESIGN: Retrospective cohort study comparing the frequency of unplanned extubations resulting in reintubations in a group of coronavirus disease 2019 patients to a historical (noncoronavirus disease 2019) control group. SETTING: This study was conducted at Henry Ford Hospital, an academic medical center in Detroit, MI. The historical noncoronavirus disease 2019 patients were treated in the 68 bed medical ICU. The coronavirus disease 2019 patients were treated in the coronavirus disease ICU, which included the 68 medical ICU beds, 18 neuro-ICU beds, 32 surgical ICU beds, and 40 cardiovascular ICU beds, as the medical ICU was expanded to these units at the peak of the pandemic in Detroit, MI. PATIENTS: The coronavirus disease 2019 cohort included patients diagnosed with coronavirus disease 2019 who were intubated for respiratory failure from March 12, 2020, to April 13, 2020. The historic control (noncoronavirus disease 2019) group consisted of patients who were admitted to the medical ICU in the year spanning from November 1, 2018 to October 31, 2019, with a need for mechanical ventilation that was not related to surgery or a neurologic reason. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: To identify how many patients in each cohort had unplanned extubations, an electronic medical records query for patients with two intubations within 30 days was performed, in addition to a review of our institutional quality and safety database of reported self-extubations. Medical charts were manually reviewed by board-certified anesthesiologists to confirm each event was an unplanned extubation followed by a reintubation within 24 hours. There was a significantly greater incidence of unplanned extubations resulting in reintubation events in the coronavirus disease 2019 cohort than in the noncoronavirus disease 2019 cohort (coronavirus disease 2019 cohort: 167 total admissions with 22 events-13.2%; noncoronavirus disease 2019 cohort: 326 total admissions with 14 events-4.3%; p < 0.001). When the rate of unplanned extubations was expressed per 100 intubated days, there was not a significant difference between the groups (0.88 and 0.57, respectively; p = 0.269). CONCLUSIONS: Coronavirus disease 2019 patients have a higher incidence of unplanned extubation that requires reintubation than noncoronavirus disease 2019 patients. Further study is necessary to evaluate the variables that contribute to this higher incidence and clinical strategies that can reduce it.

15.
Cell Death Dis ; 11(10): 899, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093452

RESUMO

Glioblastoma (GBM) is a highly aggressive tumor with poor prognosis. A small subpopulation of glioma stem cells (GSCs) has been implicated in radiation resistance and tumor recurrence. In this study we analyzed the expression of miRNAs associated with the functions of GSCs using miRNA microarray analysis of these cells compared with human neural stem cells. These analyses identified gene clusters associated with glioma cell invasiveness, axonal guidance, and TGF-ß signaling. miR-504 was significantly downregulated in GSCs compared with NSCs, its expression was lower in GBM compared with normal brain specimens and further decreased in the mesenchymal glioma subtype. Overexpression of miR-504 in GSCs inhibited their self-renewal, migration and the expression of mesenchymal markers. The inhibitory effect of miR-504 was mediated by targeting Grb10 expression which acts as an oncogene in GSCs and GBM. Overexpression of exogenous miR-504 resulted also in its delivery to cocultured microglia by GSC-secreted extracellular vesicles (EVs) and in the abrogation of the GSC-induced polarization of microglia to M2 subtype. Finally, miR-504 overexpression prolonged the survival of mice harboring GSC-derived xenografts and decreased tumor growth. In summary, we identified miRNAs and potential target networks that play a role in the stemness and mesenchymal transition of GSCs and the miR-504/Grb10 pathway as an important regulator of this process. Overexpression of miR-504 exerted antitumor effects in GSCs as well as bystander effects on the polarization of microglia via delivery by EVs.


Assuntos
Neoplasias Encefálicas/genética , Vesículas Extracelulares/fisiologia , Glioblastoma/genética , MicroRNAs/fisiologia , Microglia/citologia , Células-Tronco Neoplásicas/citologia , Animais , Neoplasias Encefálicas/metabolismo , Proteína Adaptadora GRB10/fisiologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Nus , Análise em Microsséries , Células-Tronco Neurais/citologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Int J Cancer ; 125(3): 717-22, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19431142

RESUMO

Malignant gliomas are characterized by a short median survival which is largely impacted by the resistance of these tumors tochemo- and radiotherapy. Recent studies suggest that a small subpopulation of cancer stem cells, which are highly resistant to gamma-radiation, has the capacity to repopulate the tumors and contribute to their malignant progression. gamma-radiation activates the process of autophagy and inhibition of this process increases the radiosensitivity of glioma cells; however, the role of autophagy in the resistance of glioma stem cells (GSCs) to radiation has not been yet reported. In this study we examined the induction of autophagy by gamma-radiation in CD133+ GSCs. Irradiation of CD133+ cells induced autophagy within 24-48 hr and slightly decreased the viability of the cells. gamma-radiation induced a larger degree of autophagy in the CD133+ cells as compared with CD133- cells and the CD133+ cells expressed higher levels of the autophagy-related proteins LC3, ATG5 and ATG12. The autophagy inhibitor bafilomycin A1 and silencing of ATG5 and beclin1 sensitized the CD133+ cells to gamma-radiation and significantly decreased the viability of the irradiated cells and their ability to form neurospheres. Collectively, these results indicate that the induction of autophagy contributes to the radioresistance of these cells and autophagy inhibitors may be employed to increase the sensitivity of CD133+ GSCs to gamma-radiation.


Assuntos
Antígenos CD/análise , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Neoplasias Encefálicas/radioterapia , Raios gama/uso terapêutico , Glioma/radioterapia , Glicoproteínas/análise , Peptídeos/análise , Antígeno AC133 , Proteínas Reguladoras de Apoptose/genética , Proteína 12 Relacionada à Autofagia , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/fisiopatologia , Eletroquimioterapia , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Glioma/imunologia , Glioma/fisiopatologia , Humanos , Macrolídeos/farmacologia , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/efeitos da radiação , Radiossensibilizantes/farmacologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Regulação para Cima
17.
Int J Cancer ; 124(11): 2719-27, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19199360

RESUMO

We investigated whether cilengitide could amplify the antitumor effects of radiotherapy in an orthotopic rat glioma xenograft model. Cilengitide is a specific inhibitor of alphav series integrins, and acts as an antiangiogenic. U251 human glioma cells express alphavbeta3 and alphavbeta5 integrins. We used in vitro assays of adhesion and growth of tumor and endothelial cells to evaluate cytotoxicity and the potential for cilengitide to enhance radiation toxicity. Treatment was then evaluated in an orthotopic model to evaluate synergy with therapeutic radiation in vivo. In vitro, cilengitide blocked cell adhesion, but did not influence the effects of radiation on U251 cells; cilengitide strongly amplified radiation effects on endothelial cell survival. In vivo, radiotherapy prolonged the survival of U251 tumor-bearing rats from 50 to over 110 days. Cotreatment with cilengitide and radiation dramatically amplified the effects of radiation, producing survival over 200 days and triggering an enhanced apoptotic response and suppression of tumor growth by histology at necropsy. Signaling pathways activated in the tumor included NFkappab, a documented mediator of cellular response to radiation. Because cilengitide has a short plasma half-life (t((1/2)) approximately 20 min), antiangiogenic scheduling typically uses daily injections. We found that a single dose of cilengitide (4 mg/kg) given between 4 and 12 hr prior to radiation was sufficient to produce the same effect. Our results demonstrate that blockade of alphav integrins mediates an unanticipated rapid potentiation of radiation, and suggests possible clinical translation for glioma therapy.


Assuntos
Glioblastoma/radioterapia , Integrina alfaVbeta3/antagonistas & inibidores , Radiossensibilizantes/farmacologia , Receptores de Vitronectina/antagonistas & inibidores , Venenos de Serpentes/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Adesão Celular/efeitos dos fármacos , Adesão Celular/efeitos da radiação , Linhagem Celular Tumoral , Células Endoteliais/efeitos da radiação , Glioblastoma/patologia , Humanos , Integrina alfaVbeta3/análise , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Wistar , Receptores de Vitronectina/análise , Venenos de Serpentes/farmacocinética , Fator de Transcrição RelA/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cell Death Dis ; 10(2): 82, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692507

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive, lethal, X-linked disease of skeletal and cardiac muscles caused by mutations in the dystrophin gene. Loss of dystrophin leads to muscle fiber damage and impairment of satellite cell asymmetric division, which are essential for muscle regeneration. These processes ultimately result in muscle wasting and the replacement of the degenerating muscles by fibrogenic cells, a process that leads to the generation of fibrotic tissues. Preimplantation factor (PIF) is an evolutionary conserved 15-amino acid peptide secreted by viable mammalian embryos. Synthetic PIF (sPIF) reproduces the protective/regenerative effects of the endogenous peptide in immune disorders and transplantation models. In this study, we demonstrated that sPIF treatment promoted mouse and human myoblast differentiation and inhibited the expression of collagen 1A1, collagen 1A2, and TGF-ß in DMD patient-derived myoblasts. Additionally, sPIF increased the expression of utrophin, a homolog of dystrophin protein. sPIF effects were mediated via the upregulation of lncRNA H19 and miR-675 and downregulation of let-7. sPIF also inhibited the expression of miR-21, a major fibrosis regulator. The administration of sPIF in mdx mice significantly decreased serum creatine kinase and collagen I and collagen IV expression in the diaphragm, whereas it increased utrophin expression in the diaphragm, heart and quadriceps muscles. In conclusion, sPIF promoted the differentiation of DMD myoblasts, increased utrophin expression via the H19/miRNA-675/let-7 pathway, and reduced muscle fibrosis possibly via the upregulation of miR-675 and inhibition of miR-21 expression. These findings strongly support pursuing sPIF as a potential therapeutic agent for DMD. Moreover, the completion of an sPIF phase I safety trial will further promote the use of sPIF for the treatment of muscular dystrophies.


Assuntos
Proteínas de Transporte/genética , MicroRNAs/genética , Distrofia Muscular de Duchenne/genética , Mioblastos/metabolismo , Utrofina/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos
19.
Sci Rep ; 9(1): 12876, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578341

RESUMO

An autoimmune response against myelin protein is considered one of the key pathogenic processes that initiates multiple sclerosis (MS). The currently available MS disease modifying therapies have demonstrated to reduce the frequency of inflammatory attacks. However, they appear limited in preventing disease progression and neurodegeneration. Hence, novel therapeutic approaches targeting both inflammation and neuroregeneration are urgently needed. A new pregnancy derived synthetic peptide, synthetic PreImplantation Factor (sPIF), crosses the blood-brain barrier and prevents neuro-inflammation. We report that sPIF reduces paralysis and de-myelination of the brain in a clinically-relevant experimental autoimmune encephalomyelitis mice model. These effects, at least in part, are due to post-translational modifications, which involve cyclic AMP dependent protein kinase (PKA), calcium-dependent protein kinase (PKC), and immune regulation. In terms of potential MS treatment, sPIF was successfully tested in neurodegenerative animal models of perinatal brain injury and experimental autoimmune encephalitis. Importantly, sPIF received a FDA Fast Track Approval for first in human trial in autommuninty (completed).


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Paralisia , Peptídeos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Paralisia/tratamento farmacológico , Paralisia/metabolismo , Paralisia/patologia , Peptídeos/farmacocinética , Peptídeos/farmacologia
20.
Glia ; 56(10): 1061-75, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18442089

RESUMO

Secreted protein acidic and rich in cysteine (SPARC) regulates cell-extracellular matrix interactions that influence cell adhesion and migration. We have demonstrated that SPARC is highly expressed in human gliomas, and it promotes brain tumor invasion in vitro and in vivo. To further our understanding regarding SPARC function in glioma migration, we transfected SPARC-green fluorescent protein (GFP) and control GFP vectors into U87MG cells, and assessed the effects of SPARC on cell morphology, migration, and invasion after 24 h. The expression of SPARC was associated with elongated cell morphology, and increased migration and invasion. The effects of SPARC on downstream signaling were assessed from 0 to 6 h and 24 h. SPARC increased the levels of total and phosphorylated HSP27; the latter was preceded by activation of p38 MAPK and inhibited by the p38 MAPK inhibitor SB203580. Augmented expression of SPARC was correlated with increased levels of HSP27 mRNA. In a panel of glioma cell lines, increasing levels of SPARC correlated with increasing total and phosphorylated HSP27. SPARC and HSP27 were colocalized to invading cells in vivo. Inhibition of HSP27 mRNA reversed the SPARC-induced changes in cell morphology, migration, and invasion in vitro. These data indicate that HSP27, a protein that regulates actin polymerization, cell contraction, and migration, is a novel downstream effector of SPARC-regulated cell morphology and migration. As such, it is a potential therapeutic target to inhibit SPARC-induced glioma invasion.


Assuntos
Movimento Celular/fisiologia , Glioma/patologia , Proteínas de Choque Térmico/fisiologia , Proteínas de Neoplasias/fisiologia , Osteonectina/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/genética , Glioma/metabolismo , Proteínas de Choque Térmico HSP27 , Humanos , Chaperonas Moleculares , Invasividade Neoplásica/patologia , Osteonectina/genética , Osteonectina/fisiologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA