Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 22(1): 58-63, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36411349

RESUMO

Quantum spin liquids (QSLs) are topologically ordered states of matter that host fractionalized excitations. A particular route towards a QSL is via strongly bond-dependent interactions on the hexagonal lattice. A number of Ru- and Ir-based candidate Kitaev QSL materials have been pursued, but all have appreciable non-Kitaev interactions. Using time-domain terahertz spectroscopy, we observed a broad magnetic continuum over a wide range of temperatures and fields in the honeycomb cobalt-based magnet BaCo2(AsO4)2, which has been proposed to be a more ideal version of a Kitaev QSL. Applying an in-plane magnetic field of ~0.5 T suppresses the magnetic order, and at higher fields, applying the field gives rise to a spin-polarized state. Under a 4 T magnetic field that was oriented principally out of plane, a broad magnetic continuum was observed that may be consistent with a field-induced QSL. Our results indicate BaCo2(AsO4)2 is a promising QSL candidate.

2.
Phys Rev Lett ; 123(19): 197203, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31765191

RESUMO

By means of new muon spin relaxation experiments, we disentangle extrinsic and intrinsic sources of low-temperature bulk magnetism in the candidate topological Kondo insulator (TKI) SmB_{6}. Results on Al-flux-grown SmB_{6} single crystals are compared to those on a large floating-zone-grown ^{154}Sm ^{11}B_{6} single crystal in which a 14 meV bulk spin exciton has been detected by inelastic neutron scattering. Below ∼10 K, we detect the gradual development of quasistatic magnetism due to rare-earth impurities and Sm vacancies. Our measurements also reveal two additional forms of intrinsic magnetism: (1) underlying low-energy (∼100 meV) weak magnetic moment (∼10^{-2} µ_{B}) fluctuations similar to those detected in the related candidate TKI YbB_{12} that persist down to millikelvin temperatures, and (2) magnetic fluctuations consistent with a 2.6 meV bulk magnetic excitation at zero magnetic field that appears to hinder surface conductivity above ∼4.5 K. We discuss potential origins of the magnetism.

3.
Phys Rev Lett ; 122(9): 097201, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932548

RESUMO

We report a comprehensive inelastic neutron-scattering study of the frustrated pyrochlore antiferromagnet MgCr_{2}O_{4} in its cooperative paramagnetic regime. Theoretical modeling yields a microscopic Heisenberg model with exchange interactions up to third-nearest neighbors, which quantitatively explains all of the details of the dynamic magnetic response. Our work demonstrates that the magnetic excitations in paramagnetic MgCr_{2}O_{4} are faithfully represented in the entire Brillouin zone by a theory of magnons propagating in a highly correlated paramagnetic background. Our results also suggest that MgCr_{2}O_{4} is proximate to a spiral spin-liquid phase distinct from the Coulomb phase, which has implications for the magnetostructural phase transition in MgCr_{2}O_{4}.

4.
Phys Rev Lett ; 122(19): 197203, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31144966

RESUMO

We report the discovery of incommensurate magnetism near quantum criticality in CeNiAsO through neutron scattering and zero field muon spin rotation. For T

5.
Phys Rev Lett ; 119(12): 127201, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29341662

RESUMO

We present a magnetic phase diagram of rare-earth pyrochlore Yb_{2}Ti_{2}O_{7} in a ⟨111⟩ magnetic field. Using heat capacity, magnetization, and neutron scattering data, we show an unusual field dependence of a first-order phase boundary, wherein a small applied field increases the ordering temperature. The zero-field ground state has ferromagnetic domains, while the spins polarize along ⟨111⟩ above 0.65 T. A classical Monte Carlo analysis of published Hamiltonians does account for the critical field in the low T limit. However, this analysis fails to account for the large bulge in the reentrant phase diagram, suggesting that either long-range interactions or quantum fluctuations govern low field properties.

6.
Phys Rev Lett ; 118(10): 107206, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28339241

RESUMO

Inelastic neutron scattering reveals a broad continuum of excitations in Pr_{2}Zr_{2}O_{7}, the temperature and magnetic field dependence of which indicate a continuous distribution of quenched transverse fields (Δ) acting on the non-Kramers Pr^{3+} crystal field ground state doublets. Spin-ice correlations are apparent within 0.2 meV of the Zeeman energy. A random phase approximation provides an excellent account of the data with a transverse field distribution ρ(Δ)∝(Δ^{2}+Γ^{2})^{-1}, where Γ=0.27(1) meV. Established during high temperature synthesis due to an underlying structural instability, it appears disorder in Pr_{2}Zr_{2}O_{7} actually induces a quantum spin liquid.

7.
Phys Rev Lett ; 115(4): 047401, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26252707

RESUMO

Iron pnictides and selenides display a variety of unusual magnetic phases originating from the interplay between electronic, orbital, and lattice degrees of freedom. Using powder inelastic neutron scattering on the two-leg ladder BaFe_{2}Se_{3}, we fully characterize the static and dynamic spin correlations associated with the Fe_{4} block state, an exotic magnetic ground state observed in this low-dimensional magnet and in Rb_{0.89}Fe_{1.58}Se_{2}. All the magnetic excitations of the Fe_{4} block state predicted by an effective Heisenberg model with localized spins are observed below 300 meV and quantitatively reproduced. However, the data only account for 16(3)µ_{B}^{2} per Fe^{2+}, approximatively 2/3 of the total spectral weight expected for localized S=2 moments. Our results highlight how orbital degrees of freedom in iron-based magnets can conspire to stabilize an exotic magnetic state.

8.
Phys Rev Lett ; 114(3): 036401, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25659009

RESUMO

Using inelastic neutron scattering, we map a 14 meV coherent resonant mode in the topological Kondo insulator SmB6 and describe its relation to the low energy insulating band structure. The resonant intensity is confined to the X and R high symmetry points, repeating outside the first Brillouin zone and dispersing less than 2 meV, with a 5d-like magnetic form factor. We present a slave-boson treatment of the Anderson Hamiltonian with a third neighbor dominated hybridized band structure. This approach produces a spin exciton below the charge gap with features that are consistent with the observed neutron scattering. We find that maxima in the wave vector dependence of the inelastic neutron scattering indicate band inversion.

9.
Phys Rev Lett ; 112(2): 027202, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24484043

RESUMO

Inelastic neutron scattering at low temperatures T≤30 K from a powder of LiZn2Mo3O8 demonstrates this triangular-lattice antiferromagnet hosts collective magnetic excitations from spin-1/2 Mo3O13 molecules. Apparently gapless (Δ<0.2 meV) and extending at least up to 2.5 meV, the low-energy magnetic scattering cross section is surprisingly broad in momentum space and involves one-third of the spins present above 100 K. The data are compatible with the presence of valence bonds involving nearest-neighbor and next-nearest-neighbor spins forming a disordered or dynamic state.

10.
Phys Rev Lett ; 109(16): 167207, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23215124

RESUMO

Neutron scattering in strong magnetic fields is used to show the spin resonance in superconducting CeCoIn(5) (T(c)=2.3 K) is a doublet. The underdamped resonance (hΓ=0.069±0.019 meV) Zeeman splits into two modes at E(±)=hΩ(0)±αµ(B)µ(0)H with α=0.96±0.05. A linear extrapolation of the lower peak reaches zero energy at 11.2±0.5 T, near the critical field for the incommensurate "Q phase." Kenzelmann et al. [Science 321, 1652 (2008)] This, taken with the integrated weight and polarization of the low-energy mode (E(-)), indicates that the Q phase can be interpreted as a Bose condensate of spin excitons.

11.
Phys Rev Lett ; 109(12): 127201, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23005978

RESUMO

Spin fluctuations are reported near the magnetic field-driven quantum critical point in YbRh(2)Si(2). On cooling, ferromagnetic fluctuations evolve into incommensurate correlations located at q(0) = ±(δ,δ), with δ = 0.14 ± 0.04 r.l.u. At low temperatures, an in-plane magnetic field induces a sharp intradoublet resonant excitation at an energy E(0) = gµ(B)µ(0)H with g = 3.8 ± 0.2. The intensity is localized at the zone center, indicating precession of spin density extending ξ = 6 ± 2 Å beyond the 4f site.

12.
Phys Rev Lett ; 108(18): 187206, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22681114

RESUMO

A quantum magnet, LiCuSbO4, with chains of edge-sharing spin-1/2 CuO6 octahedra is reported. While short-range order is observed for T<10 K, no zero-field phase transition or spin freezing occurs down to 100 mK. Specific heat indicates a distinct high-field phase near the 12 T saturation field. Neutron scattering shows incommensurate spin correlations with q=(0.47±0.01)π/a and places an upper limit of 70 µeV on any spin gap. Exact diagonalization of 16-spin easy-plane spin-1/2 chains with competing ferro- and antiferromagnetic interactions (J1=-75 K, J2=34 K) accounts for the T>2 K data.

13.
Phys Rev Lett ; 108(10): 107002, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22463442

RESUMO

Using polarized and unpolarized neutron scattering, we show that interstitial Fe in superconducting Fe(1+y)Te(1-x)Se(x) induces a magnetic Friedel-like oscillation that diffracts at Q⊥=(1/2 0) and involves >50 neighboring Fe sites. The interstitial >2µ(B) moment is surrounded by compensating ferromagnetic four-spin clusters that may seed double stripe ordering in Fe(1+y)Te. A semimetallic five-band model with (1/2 1/2) Fermi surface nesting and fourfold symmetric superexchange between interstitial Fe and two in-plane nearest neighbors largely accounts for the observed diffraction.

14.
Rev Sci Instrum ; 93(12): 123903, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586946

RESUMO

The proposed facility explores materials under ultra-high magnetic fields. By combining the power of high fields to tune materials and of neutron scattering to probe the resulting changes down to the atomic scale, this facility will enable transformative progress in the study of quantum materials and is named for the "TITAN" subset of Greek gods to reflect this transformation. TITAN will offer DC magnetic fields up to at least 20 T. Exploiting the record brightness and bandwidth of the Second Target Station at the Spallation Neutron Source, TITAN will probe atomic-scale responses through high efficiency neutron spectroscopy up to 80 meV energy transfer, high resolution diffraction, and small angle neutron scattering. Focusing neutron optics will maximize flux on accurately positioned samples, while radial collimation and optimized shielding and detection strategies will minimize backgrounds.

15.
Nat Mater ; 9(9): 716-20, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20639892

RESUMO

The iron chalcogenide Fe(1+y)(Te(1-x)Se(x)) is structurally the simplest of the Fe-based superconductors. Although the Fermi surface is similar to iron pnictides, the parent compound Fe(1+y)Te exhibits antiferromagnetic order with an in-plane magnetic wave vector (pi,0) (ref. 6). This contrasts the pnictide parent compounds where the magnetic order has an in-plane magnetic wave vector (pi,pi) that connects hole and electron parts of the Fermi surface. Despite these differences, both the pnictide and chalcogenide Fe superconductors exhibit a superconducting spin resonance around (pi,pi) (refs 9, 10, 11). A central question in this burgeoning field is therefore how (pi,pi) superconductivity can emerge from a (pi,0) magnetic instability. Here, we report that the magnetic soft mode evolving from the (pi,0)-type magnetic long-range order is associated with weak charge carrier localization. Bulk superconductivity occurs as magnetic correlations at (pi,0) are suppressed and the mode at (pi, pi) becomes dominant for x>0.29. Our results suggest a common magnetic origin for superconductivity in iron chalcogenide and pnictide superconductors.

16.
Sci Adv ; 7(25)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34134975

RESUMO

Ferromagnetically interacting Ising spins on the pyrochlore lattice of corner-sharing tetrahedra form a highly degenerate manifold of low-energy states. A spin flip relative to this "spin-ice" manifold can fractionalize into two oppositely charged magnetic monopoles with effective Coulomb interactions. To understand this process, we have probed the low-temperature magnetic response of spin ice to time-varying magnetic fields through stroboscopic neutron scattering and SQUID magnetometry on a new class of ultrapure Ho2Ti2O7 crystals. Covering almost 10 decades of time scales with atomic-scale spatial resolution, the experiments resolve apparent discrepancies between prior measurements on more disordered crystals and reveal a thermal crossover between distinct relaxation processes. Magnetic relaxation at low temperatures is associated with monopole motion through the spin-ice vacuum, while at elevated temperatures, relaxation occurs through reorientation of increasingly spin-like monopolar bound states. Spin fractionalization is thus directly manifest in the relaxation dynamics of spin ice.

18.
Phys Rev Lett ; 104(21): 217002, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20867128

RESUMO

We demonstrate a close relationship between superconductivity and the dimensions of the Fe-Se(Te) tetrahedron in FeSe0.5Te0.5. This is done by exploiting thin film epitaxy, which provides controlled biaxial stress, both compressive and tensile, to distort the tetrahedron. The Se/Te height within the tetrahedron is found to be of crucial importance to superconductivity, in agreement with the scenario that (π, π) spin fluctuations promote superconductivity in Fe superconductors.

19.
Phys Rev Lett ; 105(3): 037402, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20867806

RESUMO

Neutron scattering is used to investigate spin correlations in ultrapure single crystals of the S=1 triangular lattice NiGa(2)S(4). Despite a Curie-Weiss temperature of Θ(CW)=-80(2) K, static (τ>1 ns) short-range (ξ(ab)=26(3) Å) incommensurate order prevails for T>1.5 K. The incommensurate modulation Q(0)=(0.155(3),0.155(3),0), Θ(CW), and the spin-wave velocity (c=4400 m/s) can be accounted for by antiferromagnetic third-nearest-neighbor interactions J(3)=2.8(6) meV and ferromagnetic nearest-neighbor coupling J(1)=-0.35(9) J(3). Interplane correlations are limited to nearest neighbors and weakened by an in-plane field. These observations show that the short-range ordered glassy phase that has been observed in a number of highly degenerate systems can persist near the clean limit.

20.
Phys Rev Lett ; 105(13): 137207, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21230808

RESUMO

We study the magnetic-field-induced quantum phase transition from a gapped quantum phase that has no magnetic long-range order into a gapless phase in the spin-1/2 ladder compound bis(2,3-dimethylpyridinium) tetrabromocuprate (DIMPY). At temperatures below about 1 K, the specific heat in the gapless phase attains an asymptotic linear temperature dependence, characteristic of a Tomonaga-Luttinger liquid. Inelastic neutron scattering and the specific heat measurements in both phases are in good agreement with theoretical calculations, demonstrating that DIMPY is the first model material for an S=1/2 two-leg spin ladder in the strong-leg regime.


Assuntos
Magnetismo , Compostos Organometálicos/química , Compostos de Piridínio/química , Teoria Quântica , Marcadores de Spin , Nêutrons , Transição de Fase , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA