Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Technol Cancer Res Treat ; 16(6): 944-955, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28585491

RESUMO

PURPOSE: To improve patient safety and treatment quality, verification of dose delivery in radiotherapy is desirable. We present a simple, easy-to-implement, open-source method for in vivo planar dosimetry of conformal radiotherapy by electronic portal imaging device (EPID). METHODS: Correlation ratios, which relate dose in the mid-depth of slab phantoms to transit EPID signal, were determined for multiple phantom thicknesses and field sizes. Off-axis dose is corrected for by means of model-based convolution. We tested efficacy of dose reconstruction through measurements with off-reference values of attenuator thickness, field size, and monitor units. We quantified the dose calculation error in the presence of thickness changes to simulate anatomical or setup variations. An example of dose calculation on patient data is provided. RESULTS: With varying phantom thickness, field size, and monitor units, dose reconstruction was almost always within 3% of planned dose. In the presence of thickness changes from planning CT, the dose discrepancy is exaggerated by up to approximately 1.5% for 1 cm changes upstream of the isocenter plane and 4% for 1 cm changes downstream. CONCLUSION: Our novel electronic portal imaging device in vivo dosimetry allows clinically accurate 2-dimensional reconstruction of dose inside a phantom/patient at isocenter depth. Due to its simplicity, commissioning can be performed in a few hours per energy and may be modified to the user's needs. It may provide useful dose delivery information to detect harmful errors, guide adaptive radiotherapy, and assure quality of treatment.

2.
Technol Cancer Res Treat ; 16(6): 956-963, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28585490

RESUMO

PURPOSE: We recently developed a novel, open-source in vivo dosimetry that uses the electronic portal imaging device to detect dose delivery discrepancies. We applied our method on patients with rectal cancer treated on a belly board device. METHODS: In vivo dosimetry was performed on 10 patients with rectal cancer treated prone on the belly board with a 4-field box arrangement. Portal images were acquired approximately once per week from each treatment beam. Our dosimetry method used these images along with the planning CT to reconstruct patient planar dose at isocenter depth. RESULTS: Our algorithm proved sensitive to dose discrepancies and detected discordances in 7 patients. The majority of these were due to soft tissue differences between planning and treatment, present despite matching to bony anatomy. As a result of this work, quality assurance procedures have been implemented for our immobilization devices. CONCLUSION: In vivo dosimetry is a powerful quality assurance tool that can detect delivery discrepancies, including changes in patient setup and position. The added information on actual dose delivery may be used to evaluate equipment and process quality and to guide for adaptive radiotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA