Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Transp Res D Transp Environ ; 77: 132-147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31942163

RESUMO

Vehicle automation has the potential to drastically transform transportation, with important implications for energy and the environment. There is considerable uncertainty regarding the impact of automation on travel demand and vehicle efficiency. We utilize the MARKet ALlocation (MARKAL) energy system model to examine four previously published scenarios that consider different effects of automation on efficiency and demand. We do not replicate detailed estimation of individual mechanisms but apply key outcomes from prior studies within a broader energy system framework. Our analysis adds insights on fuel switching, upstream impacts, and air emissions. MARKAL dynamically captures interactions between transportation and non-transportation sectors, which is important given that the revolutionary shifts from automation may invalidate static assumptions. Model results suggest that increasing travel demands from automation may boost fuel use and petroleum-based fuel prices, potentially increasing the market penetration of alternative-fuel vehicles. In contrast, dramatic efficiency improvements from automation could drive fuel prices lower, greatly reducing the competitiveness of alternative-fueled vehicles. Furthermore, these shifts could yield positive or negative environmental impacts. Some automation scenarios even resulted in counterintuitive results. For example, if high levels of efficiency improvement drive out alternative-fuel vehicles, such as battery electric and hybrids, a net worsening of air quality relative to the other scenarios could result. We also found system-level dynamics to be key. For example, reductions in liquid fuel prices led to increased consumption, and the resulting increase in air pollutant emissions offset a portion of the potential air quality benefits of automation.

2.
Faraday Discuss ; 207(0): 217-232, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29362748

RESUMO

The ground- and excited-state electronic interactions between the nucleobase analog 8-(4'-phenylethynyl)deoxyguanosine, EG, with natural nucleobases and 7-deazaguanine, as well as between adjacent EG base analogs, have been characterized using a combination of steady-state spectroscopy and time-resolved fluorescence, absorption, and stimulated Raman spectroscopies. The properties of the nucleoside EG-H2 are only weakly perturbed upon incorporation into synthetic DNA hairpins in which thymine, cytosine or adenine are the bases flanking EG. Incorporation of the nucleoside to be adjacent to guanine or deazaguanine results in the formation of short-lived (40-80 ps) exciplexes, the charge transfer character of which increases as the oxidation potential of the donor decreases. Hairpins possessing two or three adjacent EG base analogs display exciton-coupled circular dichroism in the ground state and form long-lived fluorescent excited states upon electronic excitation. Incorporation of EG into the helical scaffold of the DNA hairpins places it adjacent to its neighboring nucleobases or a second EG, thus providing the close proximity required for the formation of exciplex or excimer intermediates upon geometric relaxation of the short-lived EG excited state. The three time-resolved spectroscopic methods employed permit both the characterization of the several intermediates and the kinetics of their formation and decay.


Assuntos
DNA/química , Fluorescência , Guanina/química , Conformação de Ácido Nucleico , Purinas/química , Guanina/análogos & derivados
3.
Environ Sci Technol ; 52(14): 8027-8038, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29928794

RESUMO

The energy system is the primary source of air pollution. Thus, evolution of the energy system into the future will affect society's ability to maintain air quality. Anticipating this evolution is difficult because of inherent uncertainty in predicting future energy demand, fuel use, and technology adoption. We apply scenario planning to address this uncertainty, developing four very different visions of the future. Stakeholder engagement suggested that technological progress and social attitudes toward the environment are critical and uncertain factors for determining future emissions. Combining transformative and static assumptions about these factors yields a matrix of four scenarios that encompass a wide range of outcomes. We implement these scenarios in the U.S. Environmental Protection Agency MARKet ALlocation (MARKAL) model. Results suggest that both shifting attitudes and technology transformation may lead to emission reductions relative to the present, even without additional policies. Emission caps, such as the Cross-State Air-Pollution Rule, are most effective at protecting against future emission increases. An important outcome of this work is the scenario-implementation approach, which uses technology-specific discount rates to encourage scenario-specific technology and fuel choices. End-use energy demands are modified to approximate societal changes. This implementation allows the model to respond to perturbations in manners consistent with each scenario.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incerteza , Estados Unidos , United States Environmental Protection Agency
4.
J Am Chem Soc ; 139(34): 12084-12092, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28767235

RESUMO

The hole transport dynamics of DNA hairpins possessing a stilbene electron acceptor and donor along with a modified guanine (G) nucleobase, specifically 8-(4'-phenylethynyl)deoxyguanosine, or EG, have been investigated. The nearly indistinguishable oxidation potentials of EG and G and unique spectroscopic characteristics of EG+• make it well-suited for directly observing transient hole occupation during charge transport between a stilbene electron donor and acceptor. In contrast to the cation radical G+•, EG+• possesses a strong absorption near 460 nm and has a distinct Raman-active ethynyl stretch. Both spectroscopic characteristics are easily distinguished from those of the stilbene donor/acceptor radical ion chromophores. Employing EG, we observe its role as a shallow hole trap, or as an intermediate hole transport site when a deeper trap state is present. Using a combination of ultrafast absorption and stimulated Raman spectroscopies, the hole-transport dynamics are observed to be similar in systems having EG vs G bases, with small perturbations to the charge transport rates and yields. These results show EG can be deployed at specified locations throughout the sequence to report on hole occupancy, thereby enabling detailed monitoring of the hole transport dynamics with base-site specificity.


Assuntos
DNA/química , Desoxiguanosina/análogos & derivados , Estilbenos/química , Transporte de Elétrons , Elétrons , Quadruplex G , Conformação de Ácido Nucleico , Análise Espectral Raman
5.
J Am Chem Soc ; 138(17): 5491-4, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27082662

RESUMO

The excited state behavior of DNA hairpins possessing a diphenylacetylenedicarboxamide (DPA) linker separated from a single guanine-cytosine (G-C) base pair by zero-to-six adenine-thymine (A-T) base pairs has been investigated. In the case of hairpins with zero or one A-T separating DPA and G, formation of both DPA anion radical (DPA(-•)) and G cation radical (G(+•)) are directly observed and characterized by their transient absorption and stimulated Raman spectra. For hairpins with two or more intervening A-T, the transient absorption spectra of DPA(-•) and the adenine polaron (An(+•)) are observed. In addition to characterization of the hole carriers, the dynamics of each step in the charge separation and charge recombination process as well as the overall efficiency of charge separation have been determined, thus providing a complete account of the mechanism and dynamics of photoinduced charge transport in these DNA hairpins.


Assuntos
DNA/química , Processos Fotoquímicos , Conformação de Ácido Nucleico , Análise Espectral/métodos
6.
J Am Chem Soc ; 137(11): 3981-90, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25737076

RESUMO

We have prepared a G-quadruplex (GQ-1) that incorporates an 8-(4'-aminophenylethynyl)guanine (GEAn) electron donor covalently attached to a 4-aminonaphthalene-1,8-imide (ANI) chromophore and a naphthalene-1,8:4,5-bis(dicarboximide) (NDI) electron acceptor (GEAn-ANI-NDI, 1). In the presence of KPF6 in tetrahydrofuran (THF), 1 self-assembles into a monodisperse, C4-symmetric GQ-1 with small spatial intraquadruplex overlap between the ANI-NDI units. Photoexcitation of monomeric 1 induces the two-step charge transfer GEAn-(1)*ANI-NDI → GEAn(+•)-ANI(-•)-NDI → GEAn(+•)-ANI-NDI(-•) that occurs in τ(CS1) = 5 ps and τ(CS2) = 330 ps, respectively, while charge recombination in ca. 300 ns. Sharpening of the GEAn(+•) transient absorption and a shift of the ethynyl vibrational frequency in 1 were observed, concomitant with the stepwise electron transfer from ANI(-•) to NDI. Formation of GQ-1 from 1 in THF increases the secondary charge-shifting rate (τ(CS2) = 110 ps) and results in no change in ethynyl vibrational frequency. Charge recombination in GQ-1 is slowed by enhanced radical-pair intersystem crossing driven by the greater number of hyperfine couplings in the assembly. Moreover, time-resolved EPR spectroscopy shows that the spin-spin-exchange interaction (J) between the radicals of GEAn(+•)-ANI-NDI(-•) within GQ-1 is smaller than that of 1, suggesting that the spin (charge) density in GEAn(+•) is more dispersed in GQ-1. The spectroscopic results are consistent with hole sharing among the guanines within the G-quadruplex that is kinetically competitive with the formation of GEAn(+•). This suggests that G-quadruplexes can serve as effective hole conduits in ordered donor-acceptor assemblies.


Assuntos
Quadruplex G , Luz , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico
7.
J Am Chem Soc ; 137(41): 13236-9, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26418462

RESUMO

We report on a visible-light-absorbing chiral molecular triangle composed of three covalently linked 1,6,7,12-tetra(phenoxy)perylene-3,4:9,10-bis(dicarboximide) (PDI) units. The rigid triangular architecture reduces the electronic coupling between the PDIs, so ultrafast symmetry-breaking charge separation is kinetically favored over intramolecular excimer formation, as revealed by femtosecond transient absorption spectroscopy. Photoexcitation of the PDI triangle dissolved in CH2Cl2 gives PDI(+•)-PDI(-•) in τCS = 12.0 ± 0.2 ps. Fast subsequent intramolecular electron/hole hopping can equilibrate the six possible energetically degenerate ion-pair states, as suggested by electron paramagnetic resonance/electron-nuclear double resonance spectroscopy, which shows that one-electron reduction of the PDI triangle results in complete electron sharing among the three PDIs. Charge recombination of PDI(+•)-PDI(-•) to the ground state occurs in τCR = 1.12 ± 0.01 ns with no evidence of triplet excited state formation.


Assuntos
Imidas/química , Perileno/análogos & derivados , Elétrons , Perileno/química , Processos Fotoquímicos , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta
8.
J Phys Chem A ; 119(22): 5587-96, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25961130

RESUMO

A covalent dyad was synthesized in which perylene-3,4,:9:10-bis(dicarboximide) (PDI) is linked to ß-apocarotene (Car) using a biphenyl spacer. The dyad is monomeric in toluene and forms a solution aggregate in methylcyclohexane (MCH). Using femtosecond transient absorption (fsTA) spectroscopy, the monomeric dyad and its aggregates were studied both in solution and in thin films. In toluene, photoexcitation at 530 nm preferentially excites PDI, and the dyad undergoes charge separation in τ = 1.7 ps and recombination in τ = 1.6 ns. In MCH and in thin solid films, 530 nm excitation of the PDI-Car aggregate also results in charge transfer that competes with energy transfer from (1)*PDI to Car and with an additional process, rapid Car triplet formation in <50 ps. Car triplet formation is only observed in the aggregated PDI-Car dyad and is attributed to singlet exciton fission (SF) within the aggregated PDI, followed by rapid triplet energy transfer from (3)*PDI to the carotenoid. SF from ß-apocarotene aggregation is ruled out by direct excitation of Car films at 414 nm, where no triplet formation is observed. Time-resolved electron paramagnetic resonance measurements on aggregated PDI-Car show the formation of (3)*Car with a spin-polarization pattern that rules out radical-pair intersystem crossing as the mechanism of triplet formation as well.

9.
J Am Chem Soc ; 136(42): 14912-23, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25245598

RESUMO

Robust perylene-3,4-dicarboximide (PMI) π-aggregates provide important light-harvesting and electron-hole pair generation advantages in organic photovoltaics and related applications, but relatively few studies have focused on the electronic interactions between PMI chromophores. In contrast, structure-function relationships based on π-π stacking in the related perylene-3,4:9,10-bis(dicarboximides) (PDIs) have been widely investigated. The performance of both PMI and PDI derivatives in organic devices may be limited by the formation of low-energy excimer trap states in morphologies where interchromophore coupling is strong. Here, five covalently bound PMI dimers with varying degrees of electronic interaction were studied to probe the relative chromophore orientations that lead to excimer energy trap states. Femtosecond near-infrared transient absorption spectroscopy was used to observe the growth of a low-energy transition at ~1450-1520 nm characteristic of the excimer state in these covalent dimers. The excimer-state absorption appears in ~1 ps, followed by conformational relaxation over 8-17 ps. The excimer state then decays in 6.9-12.8 ns, as measured by time-resolved fluorescence spectroscopy. The excimer lifetimes reach a maximum for a slip-stacked geometry in which the two PMI molecules are displaced along their long axes by one phenyl group (~4.3 Å). Additional displacement of the PMIs by a biphenyl spacer along the long axis prevents excimer formation. Symmetry-breaking charge transfer is not observed in any of the PMI dimers, and only a small triplet yield (<5%) is observed for the cofacial PMI dimers. These data provide structural insights for minimizing excimer trap states in organic devices based on PMI derivatives.

10.
Angew Chem Int Ed Engl ; 53(13): 3457-61, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24554617

RESUMO

Zinc tetrabenzotetraphenyl porphyrin (ZnTBTPP) covalently attached to four perylenediimide (PDI) acceptors self-assembles into a π-stacked, segregated columnar structure, as indicated by small- and wide-angle X-ray scattering. Photoexcitation of ZnTBTPP rapidly produces a long-lived electron-hole pair having a 26 Šaverage separation distance, which is much longer than if the pair is confined within the covalent monomer. This implies that the charges are mobile within their respective segregated ZnTBTPP and PDI charge conduits.

11.
J Am Chem Soc ; 135(36): 13322-5, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23978062

RESUMO

We report here a potassium-induced guanine quadruplex as a supramolecular platform for controlled assembly of electron donor-acceptor systems. A monodisperse, C4-symmetric octamer of a guanine-perylene-3,4,9,10-bis(dicarboximide) conjugate (GPDI) was prepared in tetrahydrofuran. The two layers of cyclic guanine tetramers have the same direction of rotation, and the PDI moiety between the layers adopts a nearly eclipsed relationship (H-aggregation), as revealed by small- and wide-angle X-ray scattering, NMR spectroscopy, and steady-state UV/vis absorption. Following photoexcitation of the PDI moiety in the quadruplex, charge separation occurs in τCS = 98 ± 12 ps to give G(+•)-PDI(-•) that recombines in τCR = 1.2 ± 0.2 ns, which is >100 times longer than that in the monomeric GPDI dyad. The transient absorption spectrum of G(+•)-PDI(-•) within the GPDI quadruplex suggests the formation of a radical anion delocalized over the neighboring PDI units, and this result is consistent with the more favorable electrochemical reduction potential for PDIs in the quadruplex relative to the monomer.


Assuntos
Quadruplex G , Guanina/química , Imidas/química , Perileno/análogos & derivados , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Modelos Moleculares , Estrutura Molecular , Perileno/química , Processos Fotoquímicos
12.
Phys Rev Lett ; 111(10): 107401, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-25166708

RESUMO

We report femtosecond stimulated Raman spectroscopy measurements of lattice dynamics in semiconductor nanocrystals and characterize longitudinal optical (LO) phonon production during confinement-enhanced, ultrafast intraband relaxation. Stimulated Raman signals from unexcited CdSe nanocrystals produce a spectral shape similar to spontaneous Raman signals. Upon photoexcitation, stimulated Raman amplitude decreases owing to experimentally resolved ultrafast phonon generation rates within the lattice. We find a ∼600 fs, particle-size-independent depletion time attributed to hole cooling, evidence of LO-to-acoustic down-conversion, and LO phonon mode softening.

13.
Environ Sci Technol ; 47(7): 3065-72, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23465362

RESUMO

The EPA-MARKAL model of the U.S. electricity sector is used to examine how imposing emissions fees based on estimated health and environmental damages might change electricity generation. Fees are imposed on life-cycle emissions of SO(2), nitrogen oxides (NO(x)), particulate matter, and greenhouse gases (GHG) from 2015 through 2055. Changes in electricity production, fuel type, emissions controls, and emissions produced under various fees are examined. A shift in fuels used for electricity production results from $30/ton CO(2)-equivalent GHG fees or from criteria pollutant fees set at the higher-end of the range of published damage estimates, but not from criteria pollutant fees based on low or midrange damage estimates. With midrange criteria pollutant fees assessed, SO(2) and NOx emissions are lower than the business as usual case (by 52% and 10%, respectively), with larger differences in the western U.S. than in the eastern U.S. GHG emissions are not significantly impacted by midrange criteria pollutant fees alone; conversely, with only GHG fees, NO(x) emissions are reduced by up to 11%, yet SO(2) emissions are slightly higher than in the business as usual case. Therefore, fees on both GHG and criteria pollutants may be needed to achieve significant reductions in both sets of pollutants.


Assuntos
Poluição do Ar/análise , Clima , Eletricidade , Fontes Geradoras de Energia , Poluentes Atmosféricos/análise , Combustíveis Fósseis/análise , Efeito Estufa , Óxidos de Nitrogênio/análise , Dióxido de Enxofre/análise , Estados Unidos
14.
J Phys Chem A ; 117(40): 10333-45, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24032482

RESUMO

Two covalent perylene-3,4:9,10-bis(dicarboximide) (PDI) dimers in which the PDI molecules are attached to a xanthene (Xan) scaffold in which the long axes of the two π-π stacked PDI molecules are slipped by 4.3 and 7.9 Å were prepared. These dimers are designed to mimic J-aggregates and provide insights into the photophysics of triplet state formation in PDI aggregates that target organic electronics. Using ultrafast transient absorption and stimulated Raman spectroscopy, the mechanism of (3)*PDI formation was found to depend strongly on a competition between the rate of Xan(•+)-PDI(•-) formation involving the spacer group and the rate of excimer-like state formation. Which mechanism is favored depends on the degree of electronic coupling between the two PDI molecules and/or solvent polarity. Singlet exciton fission to produce (3)*PDI does not compete kinetically with these processes. The excimer-like state decays relatively slowly with τ = 28 ns to produce (3)*PDI, while charge recombination of Xan(•+)-PDI(•-) yields (3)*PDI more than an order of magnitude faster. The perpendicular orientation between the π orbitals of PDI and the Xan bridge provides a large enough orbital angular momentum change to greatly increase the intersystem crossing rate via Xan(•+)-PDI(•-) → (3)*PDI charge recombination. These results highlight the importance of understanding inter-chromophore electronic coupling in a wide range of geometries as well as the active role that molecular spacers can play in the photophysics of covalent models for self-assembled chromophore aggregates.

15.
J Am Chem Soc ; 134(10): 4581-8, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22335614

RESUMO

Donor-bridge-acceptor (D-B-A) systems in which a 3,5-dimethyl-4-(9-anthracenyl)julolidine (DMJ-An) chromophore and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked by oligomeric 2,7-fluorenone (FN(n)) bridges (n = 1-3) have been synthesized. Selective photoexcitation of DMJ-An quantitatively produces DMJ(+•)-An(-•), and An(-•) acts as a high-potential electron donor. Femtosecond transient absorption spectroscopy in the visible and mid-IR regions showed that electron transfer occurs quantitatively in the sequence: DMJ(+•)-An(-•)-FN(n)-NI → DMJ(+•)-An-FN(n)(-•)-NI → DMJ(+•)-An-FN(n)-NI(-•). The charge-shift reaction from An(-•) to NI(-•) exhibits an exponential distance dependence in the nonpolar solvent toluene with an attenuation factor (ß) of 0.34 Å(-1), which would normally be attributed to electron tunneling by the superexchange mechanism. However, the FN(n)(-•) radical anion was directly observed spectroscopically as an intermediate in the charge-separation mechanism, thereby demonstrating conclusively that the overall charge separation involves the incoherent hopping (stepwise) mechanism. Kinetic modeling of the data showed that the observed exponential distance dependence is largely due to electron injection onto the first FN unit followed by charge hopping between the FN units of the bridge biased by the distance-dependent electrostatic attraction of the two charges in D(+•)-B(-•)-A. This work shows that wirelike behavior does not necessarily result from building a stepwise, energetically downhill redox gradient into a D-B-A molecule.

16.
Clean Technol Environ Policy ; 21(3): 591-604, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156356

RESUMO

Ideally, new electricity generating units will have low capital costs, low fuel costs, minimal environmental impacts, and satisfy demand without concerns of intermittency. When expanding generating capacity, candidate technologies can be evaluated against criteria such as these. Alternatively, it may be possible to pair technologies in such a way that the combination addresses these criteria better than either technology individually. One such approach is to pair concentrated solar power and natural gas combined-cycle units. This paper analyzes how an integrated solar combined cycle (ISCC) facility could fare in the larger US electricity production market, although the results are generalizable to a wider range of technologies. Modeling results suggest that a critical consideration is the extent to which ISCC qualifies as being renewable under state-level renewable portfolio standards (RPSs). The technology would be utilized at a higher level if it fully satisfies an RPS; however, even if the technology does not satisfy an RPS, it would be market-competitive if optimistic goals for capital cost and avoided natural gas purchases are met. Furthermore, if used in parts of the country with strong solar resources, ISCC could produce as much as 14% of national electricity generation in 2050. Whether adoption of ISCC leads to reduced air pollutant and greenhouse gas emissions is dependent on the technologies it displaces. Under default assumptions, the new ISCC capacity primarily displaces renewable and natural gas facilities as opposed to facilities with higher air pollutant emissions. Thus, the air pollution benefits of ISCC may be limited.

17.
J Phys Chem Lett ; 9(16): 4481-4487, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30011208

RESUMO

We report femtosecond stimulated Raman spectroscopy (FSRS) measurements on dispersions of CdSe semiconductor nanocrystals (NCs) as a function of particle size and pump fluence. Upon photoexcitation, we observe depletion of stimulated Raman gain corresponding to generation of longitudinal optical (LO) phonons followed by recovery on picosecond timescales. At higher fluences, production of multiple excitons slows recovery of FSRS signals, which we attribute to sustained increases of LO phonon populations due to multiexcitonic Auger heating. Owing to the discretized electronic structure of these NCs, such heating cannot be readily monitored via electronic spectroscopic analysis of high-energy band tails as has been performed for higher-dimensional materials. Notably, recovery timescales exceed those of the biexcitonic Auger recombination process and as such reveal overall thermalization timescales likely owing to an acoustic phonon thermalization bottleneck that dictates the cooling timescale.

18.
J Phys Chem B ; 119(43): 13560-9, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26010882

RESUMO

We report on a novel small organic molecule comprising a perylene chromophore fused to a six-membered ring containing a persistent nitroxide radical to give a perylene-nitroxide, or PerNO(•). This molecule is a robust, compact molecule in which the radical is closely bound to the chromophore but separated by saturated carbon atoms, thus limiting the electronic coupling between the chromophore and radical. We present both ultrafast transient absorption experiments and time-resolved EPR (TREPR) studies to probe the spin dynamics of photoexcited PerNO(•) and utilize X-ray crystallography to probe the molecular structure and stacking motifs of PerNO(•) in the solid state. The ability to control both the structure and electronic properties of molecules having multiple spins as well as the possibility of assembling ordered solid state materials from them is important for implementing effective molecule-based spintronics.

19.
J Phys Chem Lett ; 5(15): 2588-93, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26277948

RESUMO

Energy transfer in perylene-3,4:9,10-bis(dicarboximide) (PDI) aggregates is often limited by formation of a low-energy excimer state. Formation dynamics of excimer states are often characterized by line shape changes and peak shift dynamics in femtosecond visible transient absorption spectra. Femtosecond near-infrared transient absorption experiments reveal a unique low-energy transition that can be used to identify and characterize this state without overlapping excited singlet-state absorption. Three covalently bound PDI dimers with differing PDI-PDI distances were studied to probe the influence of interchromophore electronic coupling on the PDI excimer transient spectra and dynamics.

20.
J Phys Chem Lett ; 3(17): 2362-6, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-26292115

RESUMO

The ultrafast vibrational dynamics of the photoinduced charge-transfer reaction between perylene (Per) and perylene-3,4:9,10-bis(dicarboximide) (PDI) were investigated using femtosecond stimulated Raman spectroscopy (FSRS). Specifically probing the structural dynamics of PDI following its selective photoexcitation in a covalently linked dyad reveals vibrational modes uniquely characteristic to the PDI lowest excited singlet state and radical anion between 1000 and 1700 cm(-1). A comparison of these vibrations to those of the ground state reveals the appearance of new (1*)PDI and PDI(-•) stretching modes in the dyad at 1593 and 1588 cm(-1), respectively. DFT calculations reveal that these vibrations are parallel to the long axis of PDI and thus then may be integral to the charge separation reaction. The ability to differentiate excited state from radical anion vibrational modes allows the evaluation of the influence of specific modes on the charge transfer dynamics in donor-bridge-acceptor systems based on PDI molecular constructs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA