Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(38): e2306494120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37703281

RESUMO

Wheat is an important contributor to global food security, and further improvements are required to feed a growing human population. Functional genetics and genomics tools can help us to understand the function of different genes and to engineer beneficial changes. In this study, we used a promoter capture assay to sequence 2-kb regions upstream of all high-confidence annotated genes from 1,513 mutagenized plants from the tetraploid wheat variety Kronos. We identified 4.3 million induced mutations with an accuracy of 99.8%, resulting in a mutation density of 41.9 mutations per kb. We also remapped Kronos exome capture reads to Chinese Spring RefSeq v1.1, identified 4.7 million mutations, and predicted their effects on annotated genes. Using these predictions, we identified 59% more nonsynonymous substitutions and 49% more truncation mutations than in the original study. To show the biological value of the promoter dataset, we selected two mutations within the promoter of the VRN-A1 vernalization gene. Both mutations, located within transcription factor binding sites, significantly altered VRN-A1 expression, and one reduced the number of spikelets per spike. These publicly available sequenced mutant datasets provide rapid and inexpensive access to induced variation in the promoters and coding regions of most wheat genes. These mutations can be used to understand and modulate gene expression and phenotypes for both basic and commercial applications, where limited governmental regulations can facilitate deployment. These mutant collections, together with gene editing, provide valuable tools to accelerate functional genetic studies in this economically important crop.


Assuntos
Regiões Promotoras Genéticas , Triticum , Bioensaio , Expressão Gênica , Mutação , Triticum/genética
2.
Plant Biotechnol J ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520342

RESUMO

High-throughput genotyping arrays have provided a cost-effective, reliable and interoperable system for genotyping hexaploid wheat and its relatives. Existing, highly cited arrays including our 35K Wheat Breeder's array and the Illumina 90K array were designed based on a limited amount of varietal sequence diversity and with imperfect knowledge of SNP positions. Recent progress in wheat sequencing has given us access to a vast pool of SNP diversity, whilst technological improvements have allowed us to fit significantly more probes onto a 384-well format Axiom array than previously possible. Here we describe a novel Axiom genotyping array, the 'Triticum aestivum Next Generation' array (TaNG), largely derived from whole genome skim sequencing of 204 elite wheat lines and 111 wheat landraces taken from the Watkins 'Core Collection'. We used a novel haplotype optimization approach to select SNPs with the highest combined varietal discrimination and a design iteration step to test and replace SNPs which failed to convert to reliable markers. The final design with 43 372 SNPs contains a combination of haplotype-optimized novel SNPs and legacy cross-platform markers. We show that this design has an improved distribution of SNPs compared to previous arrays and can be used to generate genetic maps with a significantly higher number of distinct bins than our previous array. We also demonstrate the improved performance of TaNGv1.1 for Genome-wide association studies (GWAS) and its utility for Copy Number Variation (CNV) analysis. The array is commercially available with supporting marker annotations and initial genotyping results freely available.

3.
J Exp Bot ; 74(21): 6749-6759, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37599380

RESUMO

The presence or absence of awns-whether wheat heads are 'bearded' or 'smooth' - is the most visible phenotype distinguishing wheat cultivars. Previous studies suggest that awns may improve yields in heat or water-stressed environments, but the exact contribution of awns to yield differences remains unclear. Here we leverage historical phenotypic, genotypic, and climate data for wheat (Triticum aestivum) to estimate the yield effects of awns under different environmental conditions over a 12-year period in the southeastern USA. Lines were classified as awned or awnless based on sequence data, and observed heading dates were used to associate grain fill periods of each line in each environment with climatic data and grain yield. In most environments, awn suppression was associated with higher yields, but awns were associated with better performance in heat-stressed environments more common at southern locations. Wheat breeders in environments where awns are only beneficial in some years may consider selection for awned lines to reduce year-to-year yield variability, and with an eye towards future climates.


Assuntos
Grão Comestível , Triticum , Triticum/genética , Fenótipo , Resposta ao Choque Térmico , Sudeste dos Estados Unidos
4.
Mol Breed ; 43(7): 56, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37424796

RESUMO

European winter wheat cultivar "Tabasco" was reported to have resistance to powdery mildew disease caused by Blumeria graminis f. sp. tritici (Bgt) in China. In previous studies, Tabasco was reported to have the resistance gene designated as Pm48 on the short arm of chromosome 5D when a mapping population was phenotyped with pathogen isolate Bgt19 collected in China and was genotyped with simple sequence repeat (SSR) markers. In this study, single-nucleotide polymorphism (SNP) chips were used to rapidly determine the resistance gene by mapping a new F2 population that was developed from Tabasco and a susceptible cultivar "Ningmaizi119" and inoculated with pathogen isolate NCF-D-1-1 that was collected in the USA. The segregation of resistance in the population was found to link with Pm2 which was identified in Tabasco. Therefore, it was concluded that the previously reported Pm48 on chromosome arm 5DS in Tabasco should be the Pm2 gene on the same chromosome. The Pm2 was also found in European cultivars "Mattis" and "Claire" but not in any of the accessions from diploid wheat Aegilops tauschii or modern cultivars such as "Gallagher," "Smith's Gold," and "OK Corral" being used in the Great Plains in the USA. A KASP marker was developed to track the resistance allele Pm2 in wheat breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01402-3.

5.
Theor Appl Genet ; 135(2): 679-692, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34825926

RESUMO

KEY MESSAGE: We discovered a natural FT-A2 allele that increases grain number per spike in both pasta and bread wheat with limited effect on heading time. Increases in wheat grain yield are necessary to meet future global food demands. A previous study showed that loss-of-function mutations in FLOWERING LOCUS T2 (FT2) increase spikelet number per spike (SNS), an important grain yield component. However, these mutations were also associated with reduced fertility, offsetting the beneficial effect of the increases in SNS on grain number. Here, we report a natural mutation resulting in an aspartic acid to alanine change at position 10 (D10A) associated with significant increases in SNS and no negative effects on fertility. Using a high-density genetic map, we delimited the SNS candidate region to a 5.2-Mb region on chromosome 3AS including 28 genes. Among them, only FT-A2 showed a non-synonymous polymorphism (D10A) present in two different populations segregating for the SNS QTL on chromosome arm 3AS. These results, together with the known effect of the ft-A2 mutations on SNS, suggest that variation in FT-A2 is the most likely cause of the observed differences in SNS. We validated the positive effects of the A10 allele on SNS, grain number, and grain yield per spike in near-isogenic tetraploid wheat lines and in an hexaploid winter wheat population. The A10 allele is present at very low frequency in durum wheat and at much higher frequency in hexaploid wheat, particularly in winter and fall-planted spring varieties. These results suggest that the FT-A2 A10 allele may be particularly useful for improving grain yield in durum wheat and fall-planted common wheat varieties.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico/métodos , Grão Comestível/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum/genética
6.
Theor Appl Genet ; 135(9): 3177-3194, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35871415

RESUMO

KEY MESSAGE: Marker-assisted selection is important for cultivar development. We propose a system where a training population genotyped for QTL and genome-wide markers may predict QTL haplotypes in early development germplasm. Breeders screen germplasm with molecular markers to identify and select individuals that have desirable haplotypes. The objective of this research was to investigate whether QTL haplotypes can be accurately predicted using SNPs derived by genotyping-by-sequencing (GBS). In the SunGrains program during 2020 (SG20) and 2021 (SG21), 1,536 and 2,352 lines submitted for GBS were genotyped with markers linked to the Fusarium head blight QTL: Qfhb.nc-1A, Qfhb.vt-1B, Fhb1, and Qfhb.nc-4A. In parallel, data were compiled from the 2011-2020 Southern Uniform Winter Wheat Scab Nursery (SUWWSN), which had been screened for the same QTL, sequenced via GBS, and phenotyped for: visual Fusarium severity rating (SEV), percent Fusarium damaged kernels (FDK), deoxynivalenol content (DON), plant height, and heading date. Three machine learning models were evaluated: random forest, k-nearest neighbors, and gradient boosting machine. Data were randomly partitioned into training-testing splits. The QTL haplotype and 100 most correlated GBS SNPs were used for training and tuning of each model. Trained machine learning models were used to predict QTL haplotypes in the testing partition of SG20, SG21, and the total SUWWSN. Mean disease ratings for the observed and predicted QTL haplotypes were compared in the SUWWSN. For all models trained using the SG20 and SG21, the observed Fhb1 haplotype estimated group means for SEV, FDK, DON, plant height, and heading date in the SUWWSN were not significantly different from any of the predicted Fhb1 calls. This indicated that machine learning may be utilized in breeding programs to accurately predict QTL haplotypes in earlier generations.


Assuntos
Fusarium , Mapeamento Cromossômico , Resistência à Doença/genética , Genótipo , Haplótipos , Humanos , Aprendizado de Máquina , Melhoramento Vegetal , Doenças das Plantas/genética , Locos de Características Quantitativas
7.
Plant Dis ; 106(2): 364-372, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34282926

RESUMO

Fusarium head blight (FHB) is a devastating disease of wheat and barley. In the U.S.A., a significant long-term investment in breeding FHB-resistant cultivars began after the 1990s. However, to this date, no study has been performed to understand and monitor the rate of genetic progress in FHB resistance as a result of this investment. Using 20 years of data (1998 to 2018) from the Northern Uniform and Preliminarily Northern Uniform winter wheat scab nurseries that consisted of 1,068 genotypes originating from nine different institutions, we studied the genetic trends in FHB resistance within the northern soft red winter wheat growing region using mixed model analyses. For the FHB resistance traits incidence, severity, Fusarium-damaged kernels, and deoxynivalenol content, the rate of genetic gain in disease resistance was estimated to be 0.30 ± 0.1, 0.60 ± 0.09, and 0.37 ± 0.11 points per year, and 0.11 ± 0.05 parts per million per year, respectively. Among the five FHB-resistance quantitative trait loci assayed for test entries from 2012 to 2018, the frequencies of favorable alleles from Fhb 2DL Wuhan1 W14, Fhb Ernie 3Bc, and Fhb 5A Ning7840 were close to zero across the years. The frequency of the favorable at Fhb1 and Fhb 5A Ernie ranged from 0.08 to 0.33 and 0.06 to 0.20, respectively, across years, and there was no trend in changes in allele frequencies over years. Overall, this study showed that substantial genetic progress has been made toward improving resistance to FHB. It is apparent that today's investment in public wheat breeding for FHB resistance is achieving results and will continue to play a vital role in reducing FHB levels in growers' fields.


Assuntos
Fusarium , Cruzamento , Fusarium/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
8.
BMC Genomics ; 22(1): 402, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34058974

RESUMO

BACKGROUND: Genetic variation in growth over the course of the season is a major source of grain yield variation in wheat, and for this reason variants controlling heading date and plant height are among the best-characterized in wheat genetics. While the major variants for these traits have been cloned, the importance of these variants in contributing to genetic variation for plant growth over time is not fully understood. Here we develop a biparental population segregating for major variants for both plant height and flowering time to characterize the genetic architecture of the traits and identify additional novel QTL. RESULTS: We find that additive genetic variation for both traits is almost entirely associated with major and moderate-effect QTL, including four novel heading date QTL and four novel plant height QTL. FT2 and Vrn-A3 are proposed as candidate genes underlying QTL on chromosomes 3A and 7A, while Rht8 is mapped to chromosome 2D. These mapped QTL also underlie genetic variation in a longitudinal analysis of plant growth over time. The oligogenic architecture of these traits is further demonstrated by the superior trait prediction accuracy of QTL-based prediction models compared to polygenic genomic selection models. CONCLUSIONS: In a population constructed from two modern wheat cultivars adapted to the southeast U.S., almost all additive genetic variation in plant growth traits is associated with known major variants or novel moderate-effect QTL. Major transgressive segregation was observed in this population despite the similar plant height and heading date characters of the parental lines. This segregation is being driven primarily by a small number of mapped QTL, instead of by many small-effect, undetected QTL. As most breeding populations in the southeast U.S. segregate for known QTL for these traits, genetic variation in plant height and heading date in these populations likely emerges from similar combinations of major and moderate effect QTL. We can make more accurate and cost-effective prediction models by targeted genotyping of key SNPs.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Genômica , Fenótipo , Melhoramento Vegetal , Triticum/genética
9.
Plant Dis ; 105(9): 2435-2444, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33560886

RESUMO

Identification of quantitative trait loci for Fusarium head blight (FHB) resistance from different sources and pyramiding them into cultivars could provide effective protection against FHB. The objective of this study was to characterize a soft red winter wheat (SRWW) breeding population that has been subjected to intense germplasm introduction and alien introgression for FHB resistance in the past. The population was evaluated under misted FHB nurseries inoculated with Fusarium graminearum-infested corn spawn for two years. Phenotypic data included disease incidence (INC), disease severity (SEV), Fusarium damaged kernels (FDK), FHB index (FHBdx), and deoxynivalenol concentration (DON). Genome-wide association studies using 13,784 SNP markers identified 25 genomic regions at -logP ≥ 4.0 that were associated with five FHB-related traits. Of these 25, the marker trait associations that explained more than 5% phenotypic variation were localized on chromosomes 1A, 2B, 3B, 5A, 7A, 7B, and 7D, and from diverse sources including adapted SRWW lines such as Truman and Bess, and unadapted common wheat lines such as Ning7840 and Fundulea 201R. Furthermore, individuals with favorable alleles at the four loci Fhb1, Qfhb.nc-2B.1 (Q2B.1), Q7D.1, and Q7D.2 showed better FDK and DON scores (but not INC, SEV, and FHBdx) compared with other allelic combinations. Our data also showed while pyramiding multiple loci provides protection against FHB disease, it has a significant trade-off with grain yield.


Assuntos
Fusarium , Mapeamento Cromossômico , Fusarium/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
10.
Plant Dis ; 105(12): 3998-4005, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34232053

RESUMO

Wheat stem rust caused by Puccinia graminis f. sp. tritici is a widespread and recurring threat to wheat production. Emerging P. graminis f. sp. tritici variants are rapidly overcoming major gene resistance deployed in wheat cultivars and new sources of race-nonspecific resistance are urgently needed. The National Small Grains Collection (NSGC) contains thousands of wheat landrace accessions that may harbor unique and broadly effective sources of resistance to emerging P. graminis f. sp. tritici variants. All NSGC available facultative and winter-habit bread wheat landraces were tested in a field nursery in St. Paul, Minnesota, against a bulk collection of six common U.S. P. graminis f. sp. tritici races. Infection response and severity data were collected on 9,192 landrace accessions at the soft-dough stage and resistant accessions were derived from single spikes. Derived accessions were tested in St. Paul a second time to confirm resistance and in a field nursery in Njoro, Kenya against emerging races of P. graminis f. sp. tritici with virulence to many known resistance genes including Sr24, Sr31, Sr38, and SrTmp. Accessions resistant in the St. Paul field were also tested at the seedling stage with up to 13 P. graminis f. sp. tritici races, including TTKSK and TKTTF, and with 19 molecular markers linked with known stem rust resistance genes or genes associated with modern breeding practices. Forty-five accessions were resistant in both U.S. and Kenya field nurseries and lacked alleles linked with known stem rust resistance genes. Accessions with either moderate or strong resistance in the U.S. and Kenya field nurseries and with novel seedling resistance will be prioritized for further study.


Assuntos
Resistência à Doença , Doenças das Plantas , Puccinia/patogenicidade , Triticum/genética , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia
11.
New Phytol ; 225(1): 326-339, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465541

RESUMO

Awns are stiff, hair-like structures which grow from the lemmas of wheat (Triticum aestivum) and other grasses that contribute to photosynthesis and play a role in seed dispersal. Variation in awn length in domesticated wheat is controlled primarily by three major genes, most commonly the dominant awn suppressor Tipped1 (B1). This study identifies a transcription repressor responsible for awn inhibition at the B1 locus. Association mapping was combined with analysis in biparental populations to delimit B1 to a distal region of 5AL colocalized with QTL for number of spikelets per spike, kernel weight, kernel length, and test weight. Fine-mapping located B1 to a region containing only two predicted genes, including C2H2 zinc finger transcriptional repressor TraesCS5A02G542800 upregulated in developing spikes of awnless individuals. Deletions encompassing this candidate gene were present in awned mutants of an awnless wheat. Sequence polymorphisms in the B1 coding region were not observed in diverse wheat germplasm whereas a nearby polymorphism was highly predictive of awn suppression. Transcriptional repression by B1 is the major determinant of awn suppression in global wheat germplasm. It is associated with increased number of spikelets per spike and decreased kernel size.


Assuntos
Mapeamento Cromossômico , Loci Gênicos , Proteínas Repressoras/metabolismo , Supressão Genética , Transcrição Gênica , Triticum/anatomia & histologia , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Segregação de Cromossomos/genética , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudos de Associação Genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Haplótipos/genética , Endogamia , Tamanho do Órgão , Proteínas de Plantas/química , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Recombinação Genética/genética , Regulação para Cima/genética
12.
Funct Integr Genomics ; 19(1): 91-107, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30151724

RESUMO

Two hundred one hexaploid wheat accessions, representing 200 years of selection and breeding history, were sampled from the National Small Grains Collection in Aberdeen, ID, and evaluated for five root traits at the seedling stage. A paper roll-supported hydroponic system was used for seedling growth. Replicated roots samples were analyzed by WinRHIZO. We observed accessions with nearly no branching and accessions with up to 132 cm of branching. Total seminal root length ranged from 70 to 248 cm, a 3.5-fold difference. Next-generation sequencing was used to produce single-nucleotide polymorphism (SNP) markers and genomic libraries that were aligned to the wheat reference genome IWGSCv1 and were called single-nucleotide polymorphism (SNP) markers. After filtering and imputation, a total of 20,881 polymorphic sites were used to perform association mapping in TASSEL. Gene annotations were conducted for identified marker-trait associations (MTAs) with - log10P > 3.5 (p value < 0.003). In total, we identified 63 MTAs with seven for seminal axis root length (SAR), 24 for branching (BR), four for total seminal root length (TSR), eight for root dry matter (RDM), and 20 for root diameter (RD). Putative proteins of interest that we identified include chalcone synthase, aquaporin, and chymotrypsin inhibitor for SAR, MYB transcription factor and peroxidase for BR, zinc fingers and amino acid transporters for RDM, and cinnamoyl-CoA reductase for RD. We evaluated the effects of height-reducing Rht alleles and the 1B/1R translocation event on root traits and found presence of the Rht-B1b allele decreased RDM, while presence of the Rht-D1b allele increased TSR and decreased RD.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/genética , Raízes de Plantas/genética , Característica Quantitativa Herdável , Plântula/genética , Triticum/genética , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Hidroponia , Anotação de Sequência Molecular , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Poliploidia , Locos de Características Quantitativas , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
13.
Theor Appl Genet ; 132(4): 1247-1261, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30680419

RESUMO

KEY MESSAGE: The optimization of training populations and the use of diagnostic markers as fixed effects increase the predictive ability of genomic prediction models in a cooperative wheat breeding panel. Plant breeding programs often have access to a large amount of historical data that is highly unbalanced, particularly across years. This study examined approaches to utilize these data sets as training populations to integrate genomic selection into existing pipelines. We used cross-validation to evaluate predictive ability in an unbalanced data set of 467 winter wheat (Triticum aestivum L.) genotypes evaluated in the Gulf Atlantic Wheat Nursery from 2008 to 2016. We evaluated the impact of different training population sizes and training population selection methods (Random, Clustering, PEVmean and PEVmean1) on predictive ability. We also evaluated inclusion of markers associated with major genes as fixed effects in prediction models for heading date, plant height, and resistance to powdery mildew (caused by Blumeria graminis f. sp. tritici). Increases in predictive ability as the size of the training population increased were more evident for Random and Clustering training population selection methods than for PEVmean and PEVmean1. The selection methods based on minimization of the prediction error variance (PEV) outperformed the Random and Clustering methods across all the population sizes. Major genes added as fixed effects always improved model predictive ability, with the greatest gains coming from combinations of multiple genes. Maximum predictabilities among all prediction methods were 0.64 for grain yield, 0.56 for test weight, 0.71 for heading date, 0.73 for plant height, and 0.60 for powdery mildew resistance. Our results demonstrate the utility of combining unbalanced phenotypic records with genome-wide SNP marker data for predicting the performance of untested genotypes.


Assuntos
Genômica , Estações do Ano , Seleção Genética , Triticum/genética , Alelos , Marcadores Genéticos , Genética Populacional , Genótipo , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
14.
Theor Appl Genet ; 132(9): 2689-2705, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31254024

RESUMO

KEY MESSAGE: A high-resolution genetic map combined with haplotype analyses identified a wheat ortholog of rice gene APO1 as the best candidate gene for a 7AL locus affecting spikelet number per spike. A better understanding of the genes controlling differences in wheat grain yield components can accelerate the improvements required to satisfy future food demands. In this study, we identified a promising candidate gene underlying a quantitative trait locus (QTL) on wheat chromosome arm 7AL regulating spikelet number per spike (SNS). We used large heterogeneous inbred families ( > 10,000 plants) from two crosses to map the 7AL QTL to an 87-kb region (674,019,191-674,106,327 bp, RefSeq v1.0) containing two complete and two partial genes. In this region, we found three major haplotypes that were designated as H1, H2 and H3. The H2 haplotype contributed the high-SNS allele in both H1 × H2 and H2 × H3 segregating populations. The ancestral H3 haplotype is frequent in wild emmer (48%) but rare (~ 1%) in cultivated wheats. By contrast, the H1 and H2 haplotypes became predominant in modern cultivated durum and common wheat, respectively. Among the four candidate genes, only TraesCS7A02G481600 showed a non-synonymous polymorphism that differentiated H2 from the other two haplotypes. This gene, designated here as WHEAT ORTHOLOG OF APO1 (WAPO1), is an ortholog of the rice gene ABERRANT PANICLE ORGANIZATION 1 (APO1), which affects spikelet number. Taken together, the high-resolution genetic map, the association between polymorphisms in the different mapping populations with differences in SNS, and the known role of orthologous genes in other grass species suggest that WAPO-A1 is the most likely candidate gene for the 7AL SNS QTL among the four genes identified in the candidate gene region.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Marcadores Genéticos , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento , Triticum/genética , Ligação Genética , Genótipo , Haplótipos , Fenótipo , Desenvolvimento Vegetal
15.
BMC Genet ; 20(1): 82, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675927

RESUMO

BACKGROUND: Genomic selection has the potential to increase genetic gains by using molecular markers as predictors of breeding values of individuals. This study evaluated the accuracy of predictions for grain yield, heading date, plant height, and yield components in soft red winter wheat under different prediction scenarios. Response to selection for grain yield was also compared across different selection strategies- phenotypic, marker-based, genomic, combination of phenotypic and genomic, and random selections. RESULTS: Genomic selection was implemented through a ridge regression best linear unbiased prediction model in two scenarios- cross-validations and independent predictions. Accuracy for cross-validations was assessed using a diverse panel under different marker number, training population size, relatedness between training and validation populations, and inclusion of fixed effect in the model. The population in the first scenario was then trained and used to predict grain yield of biparental populations for independent validations. Using subsets of significant markers from association mapping increased accuracy by 64-70% for grain yield but resulted in lower accuracy for traits with high heritability such as plant height. Increasing size of training population resulted in an increase in accuracy, with maximum values reached when ~ 60% of the lines were used as a training panel. Predictions using related subpopulations also resulted in higher accuracies. Inclusion of major growth habit genes as fixed effect in the model caused increase in grain yield accuracy under a cross-validation procedure. Independent predictions resulted in accuracy ranging between - 0.14 and 0.43, dependent on the grouping of site-year data for the training and validation populations. Genomic selection was "superior" to marker-based selection in terms of response to selection for yield. Supplementing phenotypic with genomic selection resulted in approximately 10% gain in response compared to using phenotypic selection alone. CONCLUSIONS: Our results showed the effects of different factors on accuracy for yield and agronomic traits. Among the factors studied, training population size and relatedness between training and validation population had the greatest impact on accuracy. Ultimately, combining phenotypic with genomic selection would be relevant for accelerating genetic gains for yield in winter wheat.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Característica Quantitativa Herdável , Triticum/crescimento & desenvolvimento , Grão Comestível/genética , Modelos Genéticos , Fenótipo , Melhoramento Vegetal , Densidade Demográfica , Seleção Genética , Triticum/genética
16.
Plant Dis ; 103(9): 2359-2366, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31355733

RESUMO

In Ethiopia, breeding rust resistant wheat cultivars is a priority for wheat production. A stem rust epidemic during 2013 to 2014 on previously resistant cultivar Digalu highlighted the need to determine the effectiveness of wheat lines to multiple races of Puccinia graminis f. sp. tritici in Ethiopia. During 2014 and 2015, we evaluated a total of 97 bread wheat and 14 durum wheat genotypes against four P. graminis f. sp. tritici races at the seedling stage and in single-race field nurseries. Resistance genes were postulated using molecular marker assays. Bread wheat lines were resistant to race JRCQC, the race most virulent to durum wheat. Lines with stem rust resistance gene Sr24 possessed the most effective resistance to the four races. Only three lines with adult plant resistance possessed resistance effective to the four races comparable with cultivars with Sr24. Although responses of the wheat lines across races were positively correlated, wheat lines were identified that possessed adult plant resistance to race TTKSK but were relatively susceptible to race TKTTF. This study demonstrated the importance of testing wheat lines for response to multiple races of the stem rust pathogen to determine if lines possessed non-race-specific resistance. Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Resistência à Doença , Triticum , Resistência à Doença/genética , Etiópia , Marcadores Genéticos/genética , Triticum/classificação , Triticum/microbiologia
17.
Mol Genet Genomics ; 293(5): 1231-1243, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29872926

RESUMO

Winter wheats require a long exposure to cold temperatures (vernalization) to accelerate flowering. However, varieties differ in the length of the period of cold required to saturate the vernalization response. Here we show that single nucleotide polymorphisms (SNP) at the binding site of the GRP2 protein in the VRN-A1 first intron (henceforth, RIP3) are associated with significant differences in heading time after a partial vernalization treatment. The ancestral winter VRN-A1 allele in 'Triple Dirk C' has one SNP in the RIP3 region (1_SNP) relative to the canonical RIP3 sequence, whereas the derived 'Jagger' allele has three SNPs (3_SNPs). Both varieties have a single VRN-A1 copy encoding identical proteins. In an F2 population generated from a cross between these two varieties, plants with the 3_SNPs haplotype headed significantly earlier (P < 0.001) than those with the 1_SNP haplotype, both in the absence of vernalization (17 days difference) and after 3-weeks of vernalization (11 days difference). Plants with the 3_SNPs haplotype showed higher VRN-A1 transcript levels than those with the 1_SNP haplotype. The 3_SNPs haplotype was also associated with early heading in a panel of 127 winter wheat varieties grown in three separate controlled-environment experiments under partial vernalization (36 to 54 days, P < 0.001) and one experiment under field conditions (21 d, P < 0.0001). The RIP3 polymorphisms can be used by wheat breeders to develop winter wheat varieties adapted to regions with different duration or intensity of the cold season.


Assuntos
Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética , Triticum/crescimento & desenvolvimento , Regulação para Cima , Sítios de Ligação , Temperatura Baixa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Haplótipos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Triticum/genética
18.
Theor Appl Genet ; 131(10): 2267, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30173395

RESUMO

Unfortunately, one co-author name was incorrectly published in the original publication. The complete correct name should read as follows.

19.
Theor Appl Genet ; 131(10): 2245-2266, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30109391

RESUMO

Key message Major stem rust resistance QTLs proposed to be Rpg2 from Hietpas-5 and Rpg3 from GAW-79 were identified in chromosomes 2H and 5H, respectively, and will enhance the diversity of stem rust resistance in barley improvement programs. Stem rust is a devastating disease of cereal crops worldwide. In barley (Hordeum vulgare ssp. vulgare), the disease is caused by two pathogens: Puccinia graminis f. sp. secalis (Pgs) and Puccinia graminis f. sp. tritici (Pgt). In North America, the stem rust resistance gene Rpg1 has protected barley from serious losses for more than 60 years; however, widely virulent Pgt races from Africa in the Ug99 group threaten the crop. The accessions Hietpas-5 (CIho 7124) and GAW-79 (PI 382313) both possess moderate-to-high levels of adult plant resistance to stem rust and are the sources of the resistance genes Rpg2 and Rpg3, respectively. To identify quantitative trait loci (QTL) for stem rust resistance in Hietpas-5 and GAW-79, two biparental populations were developed with Hiproly (PI 60693), a stem rust-susceptible accession. Both populations were phenotyped to the North American Pgt races of MCCFC, QCCJB, and HKHJC in St. Paul, Minnesota, and to African Pgt races (predominately TTKSK in the Ug99 group) in Njoro, Kenya. In the Hietpas-5/Hiproly population, a major effect QTL was identified in chromosome 2H, which is proposed as the location for Rpg2. In the GAW-79/Hiproly population, a major effect QTL was identified in chromosome 5H and is the proposed location for Rpg3. These QTLs will enhance the diversity of stem rust resistance in barley improvement programs.


Assuntos
Resistência à Doença/genética , Hordeum/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Basidiomycota , Cromossomos de Plantas , Genes de Plantas , Ligação Genética , Genótipo , Hordeum/microbiologia , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia
20.
Breed Sci ; 67(2): 140-150, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28588391

RESUMO

Molecular markers are needed for enhancing the development of elite sweetpotato (Ipomoea batatas (L.) Lam) cultivars with a wide range of commercially important traits in sub-Saharan Africa. This study was conducted to estimate the heritability and determine trait correlations of storage root yield, dry matter, starch and ß-carotene content in a cross between 'New Kawogo' × 'Beauregard'. The study was also conducted to identify simple sequence repeat (SSR) markers associated with these traits. A total of 287 progeny and the parents were evaluated for two seasons at three sites in Uganda and genotyped with 250 SSR markers. Broad sense heritability (H2) for storage root yield, dry matter, starch and ß-carotene content were 0.24, 0.68, 0.70 and 0.90, respectively. Storage root ß-carotene content was negatively correlated with dry matter (r = -0.59, P < 0.001) and starch (r = -0.93, P < 0.001) content, while storage root yield was positively correlated with dry matter (r = 0.57, P = 0.029) and starch (r = 0.41, P = 0.008) content. Through logistic regression, a total of 12, 4, 6 and 8 SSR markers were associated with storage root yield, dry matter, starch and ß-carotene content, respectively. The SSR markers used in this study may be useful for quantitative trait loci analysis and selection for these traits in future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA